首页 > 考试 > 数学 > 初中数学 > 垂直的判定与性质 > 正文 | 返回 打印 |
|
题型:填空题 难度:中档
答案
∵∠BOD=45°, ∴∠AOC=∠BOD=45°(对顶角相等), ∵OE⊥AB,∴∠AOE=90°, ∴∠COE=∠COA+∠AOE=45°+90°=135°, 故答案为135°. |
据专家权威分析,试题“如图,直线AB与直线CD相交于点0,E是∠AOD内一点,已知OE⊥AB,∠BO..”主要考查你对 垂直的判定与性质,相交线 等考点的理解。关于这些考点的“档案”如下:
垂直的判定与性质相交线
考点名称:垂直的判定与性质
考点名称:相交线
相交线性质:
∠1和∠2有一条公共边OC,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。
∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角。
∠1与∠2互补,∠3与∠2互补,由“同角的补角相等”,可以得出∠1=∠3.类似地,∠2=∠4.这样,
我们得到了对顶角的性质:对顶角相等。
垂线:
垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短.
简单说成:垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
http://www.00-edu.com/ks/shuxue/2/153/2020-01-06/1932912.html十二生肖十二星座