零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 垂直的判定与性质 > 正文 返回 打印

如图,在△ABC中,∠C=90°,BD平分∠ABC,BD=5,CB=4,CD=3,则点D到AB的距离是()A.5B.4C.3D.2-数学

[db:作者]  2020-01-06 00:00:00  互联网

题文

如图,在△ABC中,∠C=90°,BD平分∠ABC,BD=5,CB=4,CD=3,则点D到AB的距离是(  )
A.5 B.4 C.3 D.2

题型:单选题  难度:中档

答案

C

据专家权威分析,试题“如图,在△ABC中,∠C=90°,BD平分∠ABC,BD=5,CB=4,CD=3,则点D到..”主要考查你对  垂直的判定与性质,角平分线的性质  等考点的理解。关于这些考点的“档案”如下:

垂直的判定与性质角平分线的性质

考点名称:垂直的判定与性质

  • 垂线的定义:
    两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
    直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
    垂线的性质:
    性质1:过一点有且只有一条直线与已知直线垂直。
    性质2:连结直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。
    垂直的判定:垂线的定义。

考点名称:角平分线的性质

  • 角平分线:
    三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。由定义可知,三角形的角平分线是一条线段。由于三角形有三个内角,所以三角形有三条角平分线。三角形的角平分线交点一定在三角形内部。

  • 角平方线定理:
    ①角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。
    ②角平分线能得到相同的两个角,都等于该角的一半。
    ③三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
    ④三角形的三个角的角平分线相交于一点,这个点称为内心 ,即以此点为圆心可以在三角形内部画一个内切圆。
    逆定理:
    在角的内部,到角两边的距离相等的点在角平分线上。

  • 角平分线作法:
    在角AOB中,画角平分线

    方法一:
    1.以点O为圆心,以任意长为半径画弧,两弧交角AOB两边于点M,N。
    2.分别以点M,N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。
    3.作射线OP。
    则射线OP为角AOB的角平分线。
    当然,角平分线的作法有很多种。下面再提供一种尺规作图的方法供参考。

    方法二:
    1.在两边OA、OB上分别截取OM、OA和ON、OB,且使得OM=ON,OA=OB;
    2.连接AN与BM,他们相交于点P;
    3.作射线OP。
    则射线OP为角AOB的角平分线。



http://www.00-edu.com/ks/shuxue/2/153/2020-01-06/1933701.html十二生肖
十二星座