零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 三角形的内角和定理 > 正文 返回 打印

如图,△ABC中,BP、CP分别是∠ABC与∠ACB的平分线,BP、CP交△ABC内一点P.(1)当∠A=50°时,求∠P的度数;(2)当∠1=∠ABC,∠2=∠ACB时,你能说明∠P=90°+∠A成立吗?(3)当∠1=∠ABC;∠2=∠A-七年级数学

[db:作者]  2020-01-10 00:00:00  互联网

题文

如图,△ABC中,BP、CP分别是∠ABC与∠ACB的平分线,BP、CP交△ABC内一点P.
(1)当∠A=50°时,求∠P的度数;
(2)当∠1=∠ABC,∠2=∠ACB时,你能说明∠P=90°+∠A成立吗?
(3)当∠1=∠ABC;∠2=∠ACB时,猜猜看:∠P与∠A又是什么关系?请说明理由;
(4)当∠1=∠ABC,∠2=∠ACB时,再猜猜,∠P与∠A又是什么关系?请直接写出∠P与∠A的关系式是: _________
题型:解答题  难度:中档

答案

解:(1)∵BP、CP分别是∠ABC与∠ACB的平分线
∴∠P=180°﹣∠1﹣∠2
=180°﹣(∠ABC+∠ACB)
=180°﹣(180°﹣∠A)
=90°+∠A
=115°
(2)成立
理由:∠P=180°﹣∠1﹣∠2
=180°﹣(∠ABC+∠ACB)
=180°﹣(180°﹣∠A)
=90°+∠A
(3)由三角形内角和定理
得∠P=180°﹣∠1﹣∠2
=180°﹣(∠ABC+∠ACB)
=180°﹣(180°﹣∠A)
(4)∠P=180°﹣(180°﹣∠A)

据专家权威分析,试题“如图,△ABC中,BP、CP分别是∠ABC与∠ACB的平分线,BP、CP交△ABC内..”主要考查你对  三角形的内角和定理,角平分线的性质  等考点的理解。关于这些考点的“档案”如下:

三角形的内角和定理角平分线的性质

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

考点名称:角平分线的性质

  • 角平分线:
    三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。由定义可知,三角形的角平分线是一条线段。由于三角形有三个内角,所以三角形有三条角平分线。三角形的角平分线交点一定在三角形内部。

  • 角平方线定理:
    ①角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。
    ②角平分线能得到相同的两个角,都等于该角的一半。
    ③三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
    ④三角形的三个角的角平分线相交于一点,这个点称为内心 ,即以此点为圆心可以在三角形内部画一个内切圆。
    逆定理:
    在角的内部,到角两边的距离相等的点在角平分线上。

  • 角平分线作法:
    在角AOB中,画角平分线

    方法一:
    1.以点O为圆心,以任意长为半径画弧,两弧交角AOB两边于点M,N。
    2.分别以点M,N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。
    3.作射线OP。
    则射线OP为角AOB的角平分线。
    当然,角平分线的作法有很多种。下面再提供一种尺规作图的方法供参考。

    方法二:
    1.在两边OA、OB上分别截取OM、OA和ON、OB,且使得OM=ON,OA=OB;
    2.连接AN与BM,他们相交于点P;
    3.作射线OP。
    则射线OP为角AOB的角平分线。



http://www.00-edu.com/ks/shuxue/2/155/2020-01-10/1962787.html十二生肖
十二星座