首页 > 考试 > 数学 > 初中数学 > 三角形的内角和定理 > 正文 | 返回 打印 |
|
题型:单选题 难度:偏易
答案
①三角形至多有二条高在三角形的外部,钝角三角形的两条高在外部,说法正确; ②一个多边形的边数每增加一条,这个多边形的内角和就增加360°,说法错误,应该是增加180°; ③两条平行直线被第三条直线所截,同旁内角的角平分线互相平行,说法错误,应该是互相垂直. ④三角形的一个外角等于两个内角的和,说法错误,应该是等于与它不相邻的两个内角的和; ⑤在△ABC中,若∠A=2∠B=3∠C,则△ABC为直角三角形,说法错误; ⑥一个三角形中至少有两个锐角,说法正确; 故选:B. |
据专家权威分析,试题“下列结论:①三角形至多有二条高在三角形的外部②一个多边形的边数每..”主要考查你对 三角形的内角和定理,三角形的外角性质,三角形的中线,角平分线,高线,垂直平分线,多边形的内角和和外角和 等考点的理解。关于这些考点的“档案”如下:
三角形的内角和定理三角形的外角性质三角形的中线,角平分线,高线,垂直平分线多边形的内角和和外角和
考点名称:三角形的内角和定理
考点名称:三角形的外角性质
三角形的外角特征:
①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;
②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;
③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。
性质:
①. 三角形的外角与它相邻的内角互补。
②. 三角形的一个外角等于和它不相邻的两个内角的和。
③. 三角形的一个外角大于任何一个和它不相邻的内角。
④. 三角形的外角和等于360°。
设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。
定理:三角形的一个外角等于不相邻的两个内角和。
定理:三角形的三个内角和为180度。
考点名称:三角形的中线,角平分线,高线,垂直平分线
<?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />
巧计方法:点到线段两端距离相等。
三角形中线性质定理:
1、三角形的三条中线都在三角形内。<?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />
2、三角形的三条中线长:
ma=(1/2)√2b2+2c2 -a2 ;
mb=(1/2)√2c2 +2a2 -b2 ;
mc=(1/2)√2a2 +2b2 -c2 。
(ma,mb,mc分别为角A,B,C所对的中线长)
3、三角形的三条中线交于一点,该点叫做三角形的重心。
4、直角三角形斜边上的中线等于斜边的一半。
5.三角形中线组成的三角形面积等于这个三角形面积的3/4.
定理内容:三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。
角平分线线定理:
定理1:在角平分线上的任意一点到这个角的两边距离相等。
逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。
定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例,
如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC
注:定理2的逆命题也成立。
三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。
1.垂直平分线垂直且平分其所在线段。
2.垂直平分线上任意一点,到线段两端点的距离相等。
3.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。
垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
<?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />
方法一:
1、取线段的中点。
2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。得到一个交点。
3、连接这两个交点。
原理:等腰三角形的高垂直等分底边。
方法二:
1、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线,得到两个交点。原理:圆的半径处处相等。
2、连接这两个交点。原理:两点成一线。
垂直平分线的概念:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)
考点名称:多边形的内角和和外角和
http://www.00-edu.com/ks/shuxue/2/155/2020-01-10/1964242.html十二生肖十二星座