零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 三角形的内角和定理 > 正文 返回 打印

已知三角形中两角之和为n,最大角比最小角大24°,求n的取值范围.-数学

[db:作者]  2020-01-10 00:00:00  互联网

题文

已知三角形中两角之和为n,最大角比最小角大24°,求n的取值范围.
题型:解答题  难度:中档

答案

设三角形的三个角度数分别是α,β,γ,且有α≥β≥γ.由题设α-γ=24°.
(1)若β+γ=n,则α=180°-n,γ=α-24°=156°-n,β=n-γ=2n-156°.
∵α≥β≥γ
∴156°-n≤2n-156°≤180°-n,
∴104°≤n≤112°.
(2)若α+γ=n,则β=180°-n,α=
1
2
n+12°,γ=
n
2
-12°
∵α≥β≥γ
n
2
-12°≤180°-n≤
1
2
n+12°,
∴112°≤n≤128°.
(3)若α+β=n,则γ=180°-n,α=γ+24°=204°-n,β=n-α=2n-204°.
∵α≥β≥γ
∴180°-n≤2n-204°≤204°-n,
∴128°≤n≤136°.
综上所述,n的取值范围是104°≤n≤136°.

据专家权威分析,试题“已知三角形中两角之和为n,最大角比最小角大24°,求n的取值范围...”主要考查你对  三角形的内角和定理  等考点的理解。关于这些考点的“档案”如下:

三角形的内角和定理

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。



http://www.00-edu.com/ks/shuxue/2/155/2020-01-10/1964796.html十二生肖
十二星座