零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 三角形的内角和定理 > 正文 返回 打印

下面四个命题:①等腰三角形底边上的中点到两腰的距离相等;②菱形的面积等于两条对角线的乘积;③对角线互相垂直且相等的四边形是正方形;④三角形的三个内角中至少有一内角不小-数学

[db:作者]  2020-01-10 00:00:00  零零社区

题文

下面四个命题:①等腰三角形底边上的中点到两腰的距离相等;②菱形的面积等于两条对角线的乘积;③对角线互相垂直且相等的四边形是正方形;④三角形的三个内角中至少有一内角不小于60°.
其中不正确的命题的个数是(  )
A.1个B.2个C.3个D.4个
题型:单选题  难度:偏易

答案

等腰三角形底边上的中点到两腰的距离相等,故①正确.
菱形的面积等于对角线乘积的一半,故②错误.
对角线互相垂直,平分且相等的四边形是正方形,故③错误.
三角形的三个内角中至少有一个内角不小于60°.故④正确.
故选B.

据专家权威分析,试题“下面四个命题:①等腰三角形底边上的中点到两腰的距离相等;②菱形的..”主要考查你对  三角形的内角和定理,等腰三角形的性质,等腰三角形的判定,菱形,菱形的性质,菱形的判定,正方形,正方形的性质,正方形的判定  等考点的理解。关于这些考点的“档案”如下:

三角形的内角和定理等腰三角形的性质,等腰三角形的判定菱形,菱形的性质,菱形的判定正方形,正方形的性质,正方形的判定

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

考点名称:菱形,菱形的性质,菱形的判定

  • 菱形的定义:
    在一个平面内,有一组邻边相等的平行四边形是菱形。

  • 菱形的性质:
    ①菱形具有平行四边形的一切性质;
    ②菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角;
    ③菱形的四条边都相等;
    ④菱形既是轴对称图形(两条对称轴分别是其两条对角线所在的直线),也是中心对称图形(对称中心是其重心,即两对角线的交点);
    ⑤在有一个角是60°角的菱形中,较短的对角线等于边长,较长的对角线是较短的对角线的根号3倍。

  • 菱形的判定:
    在同一平面内,
    (1)定义:有一组邻边相等的平行四边形是菱形
    (2)定理1:四边都相等的四边形是菱形
    (3)定理2:对角线互相垂直的平行四边形是菱形
    菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。
    菱形的面积:S菱形=底边长×高=两条对角线乘积的一半。

考点名称:正方形,正方形的性质,正方形的判定

  • 正方形的定义:
    有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
    特殊的长方形。
    四条边都相等且四个角都是直角的四边形叫做正方形。
    有一组邻边相等的矩形是正方形。
    有一个角为直角的菱形是正方形。
    对角线平分且相等,并且对角线互相垂直的四边形为正方形。
    对角线相等的菱形是正方形。

  • 正方形的性质:
    1、边:两组对边分别平行;四条边都相等;相邻边互相垂直
    2、内角:四个角都是90°;
    3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;
    4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴);
    5、正方形具有平行四边形、菱形、矩形的一切性质;
    6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;
    正方形的两条对角线把正方形分成四个全等的等腰直角三角形;
    7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;
    正方形外接圆面积大约是正方形面积的157%。
    8、正方形是特殊的长方形。

  • 正方形的判定:
    判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形,再证明它是菱形(或矩形),最后证明它是矩形(或菱形)。
    1:对角线相等的菱形是正方形。
    2:有一个角为直角的菱形是正方形。
    3:对角线互相垂直的矩形是正方形。
    4:一组邻边相等的矩形是正方形。
    5:一组邻边相等且有一个角是直角的平行四边形是正方形。
    6:对角线互相垂直且相等的平行四边形是正方形。
    7:对角线相等且互相垂直平分的四边形是正方形。
    8:一组邻边相等,有三个角是直角的四边形是正方形。
    9:既是菱形又是矩形的四边形是正方形。

    有关计算公式:
    若S为正方形的面积,C为正方形的周长,a为正方形的边长,则
    正方形面积计算公式:S =a×a(即a的2次方或a的平方),或S=对角线×对角线÷2;
    正方形周长计算公式: C=4a 。
    S正方形=。(正方形边长为a,对角线长为b)



http://www.00-edu.com/ks/shuxue/2/155/2020-01-10/1965029.html十二生肖
十二星座