零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 三角形的内角和定理 > 正文 返回 打印

已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+12∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;(3)如图3,若P点是外角∠CBF和∠B-数学

[db:作者]  2020-01-10 00:00:00  零零社区

题文

已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+
1
2
∠A;
(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-
1
2
∠A.
上述说法正确的个数是(  )
A.0个B.1个C.2个D.3个
题型:单选题  难度:中档

答案

(1)若P点是∠ABC和∠ACB的角平分线的交点,
则∠PBC=
1
2
∠ABC,∠PCB=
1
2
∠ACB
则∠PBC+∠PCB=
1
2
(∠ABC+∠ACB)=
1
2
(180°-∠A)
在△BCP中利用内角和定理得到:
∠P=180-(∠PBC+∠PCB)=180-
1
2
(180°-∠A)=90°+
1
2
∠A,
故成立;
(2)当△ABC是等腰直角三角形,∠A=90°时,结论不成立;
(3)若P点是外角∠CBF和∠BCE的角平分线的交点,
则∠PBC=
1
2
∠FBC=
1
2
(180°-∠ABC)=90°-
1
2
∠ABC,
∠BCP=
1
2
∠BCE=90°-
1
2
∠ACB
∴∠PBC+∠BCP=180°-
1
2
(∠ABC+∠ACB)
又∵∠ABC+∠ACB=180°-∠A
∴∠PBC+∠BCP=90°+
1
2
∠A,
在△BCP中利用内角和定理得到:
∠P=180-(∠PBC+∠PCB)=180-
1
2
(180°+∠A)=90°-
1
2
∠A,
故成立.
∴说法正确的个数是2个.
故选C.

据专家权威分析,试题“已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=..”主要考查你对  三角形的内角和定理  等考点的理解。关于这些考点的“档案”如下:

三角形的内角和定理

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。



http://www.00-edu.com/ks/shuxue/2/155/2020-01-10/1965252.html十二生肖
十二星座