零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 三角形的内角和定理 > 正文 返回 打印

已知:△ABC中,记∠BAC=α,∠ACB=β.(1)如图1,若AP平分∠BAC,BP,CP分别平分△ABC的外角∠CBM和∠BCN,BD⊥AP于点D,用α的代数式表示∠BPC的度数,用β的代数式表示∠PBD的度数(2)如图-数学

[db:作者]  2020-01-10 00:00:00  互联网

题文

已知:△ABC中,记∠BAC=α,∠ACB=β.
(1)如图1,若AP平分∠BAC,BP,CP分别平分△ABC的外角∠CBM和∠BCN,BD⊥AP于点D,用α的代数式表示∠BPC的度数,用β的代数式表示∠PBD的度数
(2)如图2,若点P为△ABC的三条内角平分线的交点,BD⊥AP于点D,猜想(1)中的两个结论是否发生变化,补全图形并直接写出你的结论.
题型:解答题  难度:中档

答案

(1)∵∠BAC+∠CBA+∠ACB=180°,∠BAC=α
∴∠CBA+∠ACB=180°-∠BAC=180°-α
∵∠MBC+∠ABC=180°,∠NCB+∠ACB=180°
∴∠MBC+∠NGB=360°-∠ABC-∠ACB=360°-(180°-α)=180°+α
∵BP,CP分别平分△ABC的外角∠CBM和∠BCN
∴∠PBC=
1
2
∠MBC,∠PCB=
1
2
∠NCB
∴∠PBC+∠PCB=
1
2
∠MBC+
1
2
∠NCB=
1
2
(180°+α)=90°+
1
2
α
∵∠BPC+∠PBC+∠PCB=180°
∴∠BPC=180°-(∠PBC+∠PCB)=180°-(90°+
1
2
α)=90°-
1
2
α
∵∠BAC=α,∠ACB=β,∵∠MBC是△ABC的外角
∴∠MBC=α+β
∵BP平分∠MBC
∴∠MBP=
1
2
∠MBC=
1
2
(α+β)
∵∠MBP是△ABP的外角,AP 平分∠BAC
∴∠BAP=
1
2
α,∠MBP=∠BAP+∠APB
∴∠PBD=90°-∠APB=90°-(∠MBP-∠BAP)=90°-∠MBP+∠BAP=90°-
1
2
(α+β)+
1
2
α=90°-
1
2
β;

(2)如图2,若点P为△ABC的三条内角平分线的交点,BD⊥AP于点D,猜想(1)中的两个结论已发生变化,
∠BPC=90°+
1
2
α;∠PBD=
β
2

据专家权威分析,试题“已知:△ABC中,记∠BAC=α,∠ACB=β.(1)如图1,若AP平分∠BAC,BP,CP..”主要考查你对  三角形的内角和定理  等考点的理解。关于这些考点的“档案”如下:

三角形的内角和定理

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。



http://www.00-edu.com/ks/shuxue/2/155/2020-01-10/1965284.html十二生肖
十二星座