零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 三角形的内角和定理 > 正文 返回 打印

如图,已知AD是△ABC的角平分线(∠ACB>∠B),EF⊥AD于P,交BC延长线于M,(1)如果∠ACB=90°,求证:∠M=∠1;(2)求证:∠M=12(∠ACB-∠B).-数学

[db:作者]  2020-01-10 00:00:00  零零社区

题文

如图,已知AD是△ABC的角平分线(∠ACB>∠B),EF⊥AD于P,交BC延长线于M,
(1)如果∠ACB=90°,求证:∠M=∠1;
(2)求证:∠M=
1
2
(∠ACB-∠B).
题型:解答题  难度:中档

答案

(1)证明:∵AD是△ABC的角平分线,
∴∠1=∠2,
∵EF⊥AD于P,
∴∠1+∠AEP=90°,∠APE=∠APF=90°,
∴∠AEP=∠AFP,
∵∠AFP=∠CFM,
∴∠CFM=∠AEP,
∵∠ACB=90°,
∴∠M+∠CFM=90°,
∴∠M+∠AEP=90°,
∴∠M=∠1;

(2)证明:∵EF⊥AD,AD平分∠BAC,
∴∠1=∠2,∠APE=∠APF=90°,
又∵∠AEF=180°-∠1-∠APE,∠AFE=180°-∠2-∠APF,
∴∠AEF=∠AFE,
∵∠CFM=∠AFE,
∴∠AEF=∠AFE=∠CFM,
∵∠AEF=∠B+∠M,∠MFC=∠ACB-∠M,
∴∠B+∠M=∠ACB-∠M,即∠M=
1
2
(∠ACB-∠B).

据专家权威分析,试题“如图,已知AD是△ABC的角平分线(∠ACB>∠B),EF⊥AD于P,交BC延长线于..”主要考查你对  三角形的内角和定理  等考点的理解。关于这些考点的“档案”如下:

三角形的内角和定理

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。



http://www.00-edu.com/ks/shuxue/2/155/2020-01-10/1965324.html十二生肖
十二星座