零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 三角形的内角和定理 > 正文 返回 打印

△ABC中,∠A=50°,有一块直角三角板PMN放置在△ABC上(P点在△ABC内)使三角板PMN的两条直角边PM、PN恰好分别经过点B和C(如图)(1)填空:∠ABC+∠ACB=______°,∠PBC+∠PCB=______°;(2-数学

[db:作者]  2020-01-10 00:00:00  零零社区

题文

△ABC中,∠A=50°,有一块直角三角板PMN放置在△ABC上(P点在△ABC内)使三角板PMN的两条直角边PM、PN恰好分别经过点B和C(如图)
(1)填空:∠ABC+∠ACB=______°,∠PBC+∠PCB=______°;
(2)试问∠ABP与∠ACP是否存在某种确定的数量关系,写出你的结论.
题型:解答题  难度:中档

答案

(1)∵∠A=50°,
∴∠ABC+∠ACB=180°-50°=130°,
∵∠P=90°,
∴∠PBC+∠PCB=90°,
∴∠ABC+∠ACB=130°;∠PBC+∠PCB=90°.

(2)∠ABP+∠ACP=40°.
∵∠A=50°,
∴∠ABC+∠ACB=130°,
∵∠P=90°,
∴∠PBC+∠PCB=90°,
∴∠ABP+∠ACP
=(∠ABC-∠PBC)+(∠ACB-∠PCB)
=(∠ABC+∠ACB)-(∠PBC+∠PCB)
=130°-90°
=40°.

据专家权威分析,试题“△ABC中,∠A=50°,有一块直角三角板PMN放置在△ABC上(P点在△ABC内)..”主要考查你对  三角形的内角和定理  等考点的理解。关于这些考点的“档案”如下:

三角形的内角和定理

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。



http://www.00-edu.com/ks/shuxue/2/155/2020-01-10/1965654.html十二生肖
十二星座