首页 > 考试 > 数学 > 初中数学 > 三角形的外角性质 > 正文 | 返回 打印 |
|
题型:填空题 难度:中档
答案
①、∵CD是斜边AB上的高,∠ACB=90°, ∴∠CDB=90°, ∴∠ACD+∠BCD=90°,∠BCD+∠B=90°, ∴∠ACD=∠B, ∴①正确; ②、∵AE平分∠CAB, ∴∠CAE=∠BAE, ∵∠C=90°,EF⊥AB, ∴CE=FE, ∵∠CHE=∠CAE+ACD,∠CEA=∠BAE+∠B, ∵∠ACD=∠B, ∴∠CHE=∠CEA, ∴CH=CE, 即:CH=CE=EF,∴②正确; ③、∵在Rt△ACE和Rt△AFE中AE=AE,CE=EF, ∴Rt△ACE≌Rt△AFE, ∴AC=AF,∴③正确; ④、∵CH=EF,∴CH≠HD,∴④错误; ⑤、∵在Rt△BFE中,BE>EF,而EF=CH,∴⑤错误; 故答案为:①②③. |
据专家权威分析,试题“如图,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于..”主要考查你对 三角形的外角性质,等腰三角形的性质,等腰三角形的判定,角平分线的性质 等考点的理解。关于这些考点的“档案”如下:
三角形的外角性质等腰三角形的性质,等腰三角形的判定角平分线的性质
考点名称:三角形的外角性质
三角形的外角特征:
①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;
②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;
③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。
性质:
①. 三角形的外角与它相邻的内角互补。
②. 三角形的一个外角等于和它不相邻的两个内角的和。
③. 三角形的一个外角大于任何一个和它不相邻的内角。
④. 三角形的外角和等于360°。
设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。
定理:三角形的一个外角等于不相邻的两个内角和。
定理:三角形的三个内角和为180度。
考点名称:等腰三角形的性质,等腰三角形的判定
等腰三角形的性质:
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方
9.等腰三角形中腰大于高
10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)
等腰三角形的判定:
1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。
考点名称:角平分线的性质
角平分线:
三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。由定义可知,三角形的角平分线是一条线段。由于三角形有三个内角,所以三角形有三条角平分线。三角形的角平分线交点一定在三角形内部。
角平方线定理:
①角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。
②角平分线能得到相同的两个角,都等于该角的一半。
③三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
④三角形的三个角的角平分线相交于一点,这个点称为内心 ,即以此点为圆心可以在三角形内部画一个内切圆。
逆定理:
在角的内部,到角两边的距离相等的点在角平分线上。
http://www.00-edu.com/ks/shuxue/2/156/2020-01-10/1960236.html十二生肖十二星座