零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 三角形的外角性质 > 正文 返回 打印

如图,在四边形ABCD中,AB∥CD,点E、F分别在AD、BC边上,连接AC交EF于G,∠1=∠BAC.(1)求证:EF∥CD;(2)若∠CAF=15°,∠2=45°,∠3=20°,求∠B和∠ACD的度数.-数学

[db:作者]  2020-01-10 00:00:00  互联网

题文

如图,在四边形ABCD中,AB∥CD,点E、F分别在AD、BC边上,连接AC交EF于G,∠1=∠BAC.
(1)求证:EF∥CD;
(2)若∠CAF=15°,∠2=45°,∠3=20°,求∠B和∠ACD的度数.

题型:解答题  难度:中档

答案

证明:(1)

如右图,
∵∠1=∠BAC,
∴AB∥EF,
∵AB∥CD,
∴EF∥CD;
 
(2)∵EF∥CD,
∴∠B+∠BFE=180°,
∵∠BFE=∠2+∠3=65°,
∴∠B=115°,
∵∠1是△AGF的外角,
∴∠1=∠3+∠GAF=35°,
∵EF∥CD,
∴∠ACD=∠1=35°.

据专家权威分析,试题“如图,在四边形ABCD中,AB∥CD,点E、F分别在AD、BC边上,连接AC交..”主要考查你对  三角形的外角性质  等考点的理解。关于这些考点的“档案”如下:

三角形的外角性质

考点名称:三角形的外角性质

  • 三角形的外角
    三角形的一条边的延长线和另一条相邻的边组成的角,叫做三角形的外角。

    ∠1是三角形的外角。

  • 三角形的外角特征:
    ①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;
    ②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;
    ③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。
     
    性质:
    ①. 三角形的外角与它相邻的内角互补。
    ②. 三角形的一个外角等于和它不相邻的两个内角的和。
    ③. 三角形的一个外角大于任何一个和它不相邻的内角。
    ④. 三角形的外角和等于360°。
    设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。

    定理:三角形的一个外角等于不相邻的两个内角和。
    定理:三角形的三个内角和为180度。



http://www.00-edu.com/ks/shuxue/2/156/2020-01-10/1960724.html十二生肖
十二星座