首页 > 考试 > 数学 > 初中数学 > 三角形的外角性质 > 正文 | 返回 打印 |
|
题型:解答题 难度:中档
答案
证明:(1) 如右图, ∵∠1=∠BAC, ∴AB∥EF, ∵AB∥CD, ∴EF∥CD; (2)∵EF∥CD, ∴∠B+∠BFE=180°, ∵∠BFE=∠2+∠3=65°, ∴∠B=115°, ∵∠1是△AGF的外角, ∴∠1=∠3+∠GAF=35°, ∵EF∥CD, ∴∠ACD=∠1=35°. |
据专家权威分析,试题“如图,在四边形ABCD中,AB∥CD,点E、F分别在AD、BC边上,连接AC交..”主要考查你对 三角形的外角性质 等考点的理解。关于这些考点的“档案”如下:
三角形的外角性质
考点名称:三角形的外角性质
三角形的外角特征:
①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;
②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;
③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。
性质:
①. 三角形的外角与它相邻的内角互补。
②. 三角形的一个外角等于和它不相邻的两个内角的和。
③. 三角形的一个外角大于任何一个和它不相邻的内角。
④. 三角形的外角和等于360°。
设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。
定理:三角形的一个外角等于不相邻的两个内角和。
定理:三角形的三个内角和为180度。
http://www.00-edu.com/ks/shuxue/2/156/2020-01-10/1960724.html十二生肖十二星座