零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 三角形的外角性质 > 正文 返回 打印

如图,在△ABC中,AB=AC,点E为BC边上一动点(不与点B、C重合),过点E作射线EF交AC于点F,使∠AEF=∠B.(1)判断∠BAE与∠CEF的大小关系,并说明理由;(2)请你探索:当△AEF为直角三角-数学

[db:作者]  2020-01-10 00:00:00  零零社区

题文

如图,在△ABC中,AB=AC,点E为BC边上一动点(不与点B、C重合),过点E作射线EF交AC于点F,使∠AEF=∠B.
(1)判断∠BAE与∠CEF的大小关系,并说明理由;
(2)请你探索:当△AEF为直角三角形时,求∠AEF与∠BAE的数量关系.

题型:解答题  难度:中档

答案

(1)∠BAE=∠FEC;
理由如下:
∵∠B+∠BAE=∠AEC,∠AEF=∠B,
∴∠BAE=∠FEC;



(2)如图1,当∠AFE=90°时,
∵∠B+∠BAE=∠AEF+∠CEF,
∠B=∠AEF=∠C,
∴∠BAE=∠CEF,
∵∠C+∠CEF=90°,
∴∠BAE+∠AEF=90°,
即∠AEF与∠BAE的数量关系是互余;
如图2,当∠EAF=90°时,


∵∠B+∠BAE=∠AEF+∠1,
∠B=∠AEF=∠C,
∴∠BAE=∠1,
∵∠C+∠1+∠AEF=90°,
∴2∠AEF+∠1=90°,
即2∠AEF与∠BAE的数量关系是互余.

据专家权威分析,试题“如图,在△ABC中,AB=AC,点E为BC边上一动点(不与点B、C重合),过..”主要考查你对  三角形的外角性质,等腰三角形的性质,等腰三角形的判定  等考点的理解。关于这些考点的“档案”如下:

三角形的外角性质等腰三角形的性质,等腰三角形的判定

考点名称:三角形的外角性质

  • 三角形的外角
    三角形的一条边的延长线和另一条相邻的边组成的角,叫做三角形的外角。

    ∠1是三角形的外角。

  • 三角形的外角特征:
    ①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;
    ②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;
    ③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。
     
    性质:
    ①. 三角形的外角与它相邻的内角互补。
    ②. 三角形的一个外角等于和它不相邻的两个内角的和。
    ③. 三角形的一个外角大于任何一个和它不相邻的内角。
    ④. 三角形的外角和等于360°。
    设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。

    定理:三角形的一个外角等于不相邻的两个内角和。
    定理:三角形的三个内角和为180度。

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。



http://www.00-edu.com/ks/shuxue/2/156/2020-01-10/1960781.html十二生肖
十二星座