零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 三角形的外角性质 > 正文 返回 打印

如图:在△ABC中,∠A=α,△ABC的内角或外角平分线交于点P,且∠P=β,试探求图1,2,3中α与β的关系,并选择你认为最有把握又最喜欢的一个加以说明.-数学

[db:作者]  2020-01-10 00:00:00  互联网

题文

如图:在△ABC中,∠A=α,△ABC的内角或外角平分线交于点P,且∠P=β,试探求图1,2,3中α与β的关系,并选择你认为最有把握又最喜欢的一个加以说明.
题型:解答题  难度:中档

答案

(1)β=90°+
1
2
α;(2)β=
1
2
α;(3)β=90°-
1
2
α.
下面选择(1)进行证明.
在图(1)中,根据三角形内角和定理可得:∠ABC+∠ACB=180°-∠A.
∵BP与CP是△ABC的角平分线,
∴∠PBC=
1
2
∠ABC,∠PCB=
1
2
∠ACB,
∴∠PBC+∠PCB=
1
2
(∠ABC+∠ACB)=90°-
1
2
α.
在△PBC中,∠BPC=180°-(∠PCB+∠PCB)=180°-(90°-
1
2
α)=90°+
1
2
α.
∴β=90°+
1
2
α.图(2),结论:∠BPC=
1
2
∠A.
证明如下:
∠P=∠1-∠2=
1
2
(∠ACD-∠ABC)=
1
2
∠A.
∴β=
1
2
α;
(3)∵BP、CP分别是△ABC两个外角∠CBD和∠BCE的平分线,
∴∠CBP=
1
2
(∠A+∠ACB),∠BCP=
1
2
(∠A+∠ABC),
∴∠BPC=180°-∠CBP-∠BCP=180°-∠A-
1
2
(∠ABC+∠ACB),
∴∠P与∠A的关系是:∠P=180°-∠A-
1
2
(∠ABC+∠ACB)=90°-
1
2
α.

据专家权威分析,试题“如图:在△ABC中,∠A=α,△ABC的内角或外角平分线交于点P,且∠P=β,..”主要考查你对  三角形的外角性质  等考点的理解。关于这些考点的“档案”如下:

三角形的外角性质

考点名称:三角形的外角性质

  • 三角形的外角
    三角形的一条边的延长线和另一条相邻的边组成的角,叫做三角形的外角。

    ∠1是三角形的外角。

  • 三角形的外角特征:
    ①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;
    ②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;
    ③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。
     
    性质:
    ①. 三角形的外角与它相邻的内角互补。
    ②. 三角形的一个外角等于和它不相邻的两个内角的和。
    ③. 三角形的一个外角大于任何一个和它不相邻的内角。
    ④. 三角形的外角和等于360°。
    设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。

    定理:三角形的一个外角等于不相邻的两个内角和。
    定理:三角形的三个内角和为180度。



http://www.00-edu.com/ks/shuxue/2/156/2020-01-10/1961415.html十二生肖
十二星座