题文
如图,在四边形ABCD中,AD=2,BC=3,∠A=∠B=90°,点P是AB上一点,DP=CP,∠DPC=90°,则DC的长是( )
A.
B.
C.
D.5
答案
据专家权威分析,试题“如图,在四边形ABCD中,AD=2,BC=3,∠A=∠B=90°,点P是AB上一点,..”主要考查你对 直角三角形的性质及判定,勾股定理,梯形,梯形的中位线 等考点的理解。关于这些考点的“档案”如下:
直角三角形的性质及判定勾股定理梯形,梯形的中位线
考点名称:直角三角形的性质及判定
直角三角形性质:直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。性质5:如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)2=BD·DC。(2)(AB)2=BD·BC。(3)(AC)2=CD·BC。性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。性质7:如图,1/AB2+1/AC2=1/AD2性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。性质9:直角三角形直角上的角平分线与斜边的交点D 则 BD:DC=AB:AC
直角三角形的判定方法:判定1:定义,有一个角为90°的三角形是直角三角形。判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)
考点名称:勾股定理
考点名称:梯形,梯形的中位线
梯形性质:①梯形的上下两底平行;②梯形的中位线(两腰中点相连的线叫做中位线)平行于两底并且等于上下底和的一半。③等腰梯形对角线相等。
梯形判定:1.一组对边平行,另一组对边不平行的四边形是梯形。2.一组对边平行且不相等的四边形是梯形。梯形中位线定理:梯形中位线平行于两底,并且等于两底和的一半。 梯形中位线×高=(上底+下底)×高=梯形面积梯形中位线到上下底的距离相等中位线长度=(上底+下底)梯形的周长与面积:梯形的周长公式:上底+下底+腰+腰,用字母表示:a+b+c+d。等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+b+2c。梯形的面积公式:(上底+下底)×高÷2,用字母表示:S=(a+b)×h。变形1:h=2s÷(a+b);变形2:a=2s÷h-b;变形3:b=2s÷h-a。另一计算梯形的面积公式: 中位线×高,用字母表示:L·h。对角线互相垂直的梯形面积为:对角线×对角线÷2。
梯形的分类:等腰梯形:两腰相等的梯形。 直角梯形:有一个角是直角的梯形。 等腰梯形的性质:(1)等腰梯形的同一底边上的两个角相等。 (2)等腰梯形的对角线相等。 (3)等腰梯形是轴对称图形。 等腰梯形的判定:(1)定义:两腰相等的梯形是等腰梯形 (2)定理:在同一底上的两个角相等的梯形是等腰梯形 (3)对角线相等的梯形是等腰梯形。