首页 > 考试 > 数学 > 初中数学 > 直角三角形的性质及判定 > 正文 | 返回 打印 |
|
题型:填空题 难度:偏易
答案
∵AD平分∠BAC,BD=2CD, ∴DE=DC,
∴DC?AB+DC?AC=3DC?AC, ∴AB=2AC, 又∵在△ABC中,∠C=90°, ∴∠B=30°. 故答案为:30°. |
据专家权威分析,试题“如图,在△ABC中,已知∠C=90°,AD平分∠BAC,BD=2CD,那么∠B的度数..”主要考查你对 直角三角形的性质及判定,角平分线的性质 等考点的理解。关于这些考点的“档案”如下:
直角三角形的性质及判定角平分线的性质
考点名称:直角三角形的性质及判定
直角三角形性质:
直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
性质5:
如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
(1)(AD)2=BD·DC。
(2)(AB)2=BD·BC。
(3)(AC)2=CD·BC。
性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
性质7:如图,1/AB2+1/AC2=1/AD2
性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
性质9:直角三角形直角上的角平分线与斜边的交点D 则 BD:DC=AB:AC
直角三角形的判定方法:
判定1:定义,有一个角为90°的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)
考点名称:角平分线的性质
角平分线:
三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。由定义可知,三角形的角平分线是一条线段。由于三角形有三个内角,所以三角形有三条角平分线。三角形的角平分线交点一定在三角形内部。
角平方线定理:
①角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。
②角平分线能得到相同的两个角,都等于该角的一半。
③三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
④三角形的三个角的角平分线相交于一点,这个点称为内心 ,即以此点为圆心可以在三角形内部画一个内切圆。
逆定理:
在角的内部,到角两边的距离相等的点在角平分线上。
http://www.00-edu.com/ks/shuxue/2/160/2020-05-20/1994682.html十二生肖十二星座