零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 直角三角形的性质及判定 > 正文 返回 打印

如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=12AB.-数学

[db:作者]  2020-05-20 00:00:00  互联网

题文

如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC=
1
2
AB.

题型:解答题  难度:中档

答案

证明:(1)∵OA=OC,
∴∠A=∠OCA.
又∵∠COB为△AOC的外角,
∴∠COB=2∠OCA,又∠COB=2∠PCB,
∴∠OCA=∠PCB,
∵AB是⊙O直径,
∴∠ACB=90°,
∴∠OCA+∠OCB=90°,
∴∠PCB+∠OCB=90°,
∴∠PCO=90°,
∵点C在⊙O上,
∴PC是⊙O的切线;

(2)∵AB是⊙O的直径,
∴∠ACB=90°.
又∵点O是斜边AB的中点,
∴OC=
1
2
AB.
∵AC=PC,
∴∠A=∠P.
又由(1)知,∠OCA=∠PCB,
∴∠COB=∠OBC,
∴OC=BC=
1
2
AB,即BC=
1
2
AB.

据专家权威分析,试题“如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交..”主要考查你对  直角三角形的性质及判定,圆心角,圆周角,弧和弦,直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)  等考点的理解。关于这些考点的“档案”如下:

直角三角形的性质及判定圆心角,圆周角,弧和弦直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)

考点名称:直角三角形的性质及判定

  • 直角三角形定义:
    有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。

  • 直角三角形性质:
    直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
    性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
    性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
    性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
    性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
    性质5:

    如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
    (1)(AD)2=BD·DC。
    (2)(AB)2=BD·BC。
    (3)(AC)2=CD·BC。
    性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
    在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
    性质7:如图,1/AB2+1/AC2=1/AD2
    性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
    性质9:直角三角形直角上的角平分线与斜边的交点D 则    BD:DC=AB:AC

  • 直角三角形的判定方法:
    判定1:定义,有一个角为90°的三角形是直角三角形。
    判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
    判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
    判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
    判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
    判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
    判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)

考点名称:圆心角,圆周角,弧和弦

  • 圆的定义:
    在同一平面内,到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心。图形一周的长度,就是圆的周长。

    弧:
    圆上任意两点间的部分叫做圆弧,简称弧。
    弧用符号“⌒”表示以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
    优弧:大于半圆的弧(多用三个字母表示);
    劣弧:小于半圆的弧(多用两个字母表示)
    圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。 
     弧、弦、弦心距、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
    推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

    圆心角:
    顶点在圆心的角叫做圆心角。

    圆周角
    顶点在圆上,并且两边都和圆相交的角叫做圆周角。
    圆周角的顶点在圆上,它的两边为圆的两条弦。

  • 圆心角特征识别:
    ①顶点是圆心;
    ②两条边都与圆周相交。

    计算公式:
    ①L(弧长)=n/180Xπr(n为圆心角度数,以下同);
    ②S(扇形面积) = n/360Xπr2
    ③扇形圆心角n=(180L)/(πr)(度)。
    ④K=2Rsin(n/2) K=弦长;n=弦所对的圆心角,以度计。

    圆心角定理:
    圆心角的度数等于它所对的弧的度数。
    理解:(定义)
    (1)等弧对等圆心角
    (2)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.
    (3)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.
    (4)圆心角的度数和它们对的弧的度数相等.
    推论:
    在同圆或等圆中,如果(1)两个圆心角,(2)两条弧,(3)两条弦(4)两条弦上的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等

    与圆周角关系:
    在同圆或等圆中,同弧或同弦所对的圆周角等于二分之一的圆心角。
    定理证明:分三种情况讨论,始终做直径COD,利用等腰三角形等腰底角相等,外角等于两内角之和来证明。

    圆周角定理推论
    圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。
    ①圆周角度数定理:圆周角的度数等于它所对的弧的度数的一半。
    ②同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半。
    ③同圆或等圆中,同弧或等弧所对的圆周角相等,相等圆周角所对的弧也相等。(不在同圆或等圆中其实也相等的。注:仅限这一条。)
    ④半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径。
    ⑤圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
    ⑥在同圆或等圆中,圆周角相等<=>弧相等<=>弦相等。

考点名称:直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)

  • 直线与圆的位置关系:
    直线与圆的位置关系有三种:直线与圆相交,直线与圆相切,直线与圆相离。
    (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点AB与⊙O相交,d<r;
    (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。
    (3)相离:直线和圆没有公共点时,叫做直线和圆相离,AB与圆O相离,d>r。(d为圆心到直线的距离)

  • 直线与圆的三种位置关系的判定与性质:
    (1)数量法:通过比较圆心O到直线距离d与圆半径的大小关系来判定,
    如果⊙O的半径为r,圆心O到直线l的距离为d,则有:
    直线l与⊙O相交d<r;
    直线l与⊙O相切d=r;
    直线l与⊙O相离d>r;
    (2)公共点法:通过确定直线与圆的公共点个数来判定。
    直线l与⊙O相交d<r2个公共点;
    直线l与⊙O相切d=r有唯一公共点;
    直线l与⊙O相离d>r无公共点 。

    圆的切线的判定和性质   
    (1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
    (2)切线的性质定理:圆的切线垂直于经过切点的半径。

    切线长:
    在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
    切线长定理:
    从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

  • 直线与圆的位置关系判定方法:
    平面内,直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0的位置关系判断一般方法是:
    1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x2+y2+Dx+Ey+F=0,即成为一个关于x的方程
    如果b2-4ac>0,则圆与直线有2交点,即圆与直线相交。
    如果b2-4ac=0,则圆与直线有1交点,即圆与直线相切。
    如果b2-4ac<0,则圆与直线有0交点,即圆与直线相离。

    2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x2+y2+Dx+Ey+F=0化为(x-a)2+(y-b)2=r2
    令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么: 
    当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;
    当x1<x=-C/A<x2时,直线与圆相交。 



http://www.00-edu.com/ks/shuxue/2/160/2020-05-20/1994719.html十二生肖
十二星座