零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 直角三角形的性质及判定 > 正文 返回 打印

如图,把一个等腰直角三角形ABC沿斜边上的高BD剪下,与剩下部分能拼成一个平行四边形BCFD(见示意图①)(1)想一想判断四边形BCFD是平行四边形的依据是______.(用平行四边形的判-数学

[db:作者]  2020-05-20 00:00:00  互联网

题文

如图,把一个等腰直角三角形ABC沿斜边上的高BD剪下,与剩下部分能拼成一个平行四边形BCFD(见示意图①)
(1)想一想判断四边形BCFD是平行四边形的依据是______.(用平行四边形的判定方法叙述)
(2)做一做按上述方法,请你拼一个与图①位置或形状不同的平行四边形,并在图②中画出示意图.

题型:解答题  难度:中档

答案

(1)一组对边平行且相等的四边形是平行四边形(可以有多种说法).
证明:∵为等腰直角三角形,且BD为高,
∴AD=BD=CD,∠BDC=∠BDA=∠DCF=90°,


∴BD∥CF且BD=CF,
∴四边形BCFD是平行四边形.

(2)如图,使BD与AB重合,
∵为等腰直角三角形
∴BD=AD=CD,∠DBC=∠ABD=45°
可以知道BD=CE,∠BDC=∠BCE,
∴BD=CE且BD⊥CE,
即BDCE为所作的平行四边形.

据专家权威分析,试题“如图,把一个等腰直角三角形ABC沿斜边上的高BD剪下,与剩下部分能..”主要考查你对  直角三角形的性质及判定,平行四边形的判定  等考点的理解。关于这些考点的“档案”如下:

直角三角形的性质及判定平行四边形的判定

考点名称:直角三角形的性质及判定

  • 直角三角形定义:
    有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。

  • 直角三角形性质:
    直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
    性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
    性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
    性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
    性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
    性质5:

    如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
    (1)(AD)2=BD·DC。
    (2)(AB)2=BD·BC。
    (3)(AC)2=CD·BC。
    性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
    在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
    性质7:如图,1/AB2+1/AC2=1/AD2
    性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
    性质9:直角三角形直角上的角平分线与斜边的交点D 则    BD:DC=AB:AC

  • 直角三角形的判定方法:
    判定1:定义,有一个角为90°的三角形是直角三角形。
    判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
    判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
    判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
    判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
    判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
    判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)

考点名称:平行四边形的判定

  • 平行四边形的判定:
    (1)定义:两组对边分别平行的四边形是平行四边形;
    (2)定理1:两组对角分别相等的四边形是平行四边形;
    (3)定理2:两组对边分别相等的四边形是平行四边形;
    (4)定理3:对角线互相平分的四边形是平行四边形
    (5)定理4:一组对边平行且相等的四边形是平行四边形。
    平行四边形的面积:S=底×高。



http://www.00-edu.com/ks/shuxue/2/160/2020-05-20/1994740.html十二生肖
十二星座