首页 > 考试 > 数学 > 初中数学 > 直角三角形的性质及判定 > 正文 | 返回 打印 |
|
题型:解答题 难度:中档
答案
(1)
(2)∵正方形ABCD,AC为其对角线, ∴FAP=∠BCP=45°, ∵等腰Rt△EBP, ∴∠E=∠BPF=∠PAF, ∵∠EFB=∠AFP, ∴∠EBF=∠PBC, ∵∠EBP=∠ABC=90°, ∴∠EBF=∠PBC, ∴△PFA∽△BPC,△EBP∽△ABC, ∴AP:BC=PF:BP,EP:AC=BP:BC, ∴BP:BC=PF:AP, ∴EP:AC=PF:AP,即PF:PE=AP:AC, ∵n=2, ∴AP=2PC, ∴AP:AC=2:3, ∴PF:PE=AP:AC=2:3; (3)∵正方形ABCD,AC为其对角线, ∴∠BAC=∠BCA=45°, ∵等腰直角三角形EBP, ∴∠BEP=∠BPE=45°, ∴△EBP∽△ABC, ∴EP:AC=BP:BC, ∴∠FBE=∠FPA, ∵∠ABC=∠EBP=90°, ∴∠FBE=∠PBC, ∴∠PBC=∠FPA, ∴△PBC∽△FPA, ∴AP:BC=PF:BP, ∴BP:BC=PF:AP, ∵BP:BC=PE:AC, ∴PF:AP=PE:AC,即PE:PF=AC:AP, ∵PE=5EF, ∴PE:PF=5:6, ∴AC:AP=5:6, ∴AP:PC=6:1, ∵AP=nPC, ∴n=6, ∴当n=6时,PE=5EF. 故答案为
|
据专家权威分析,试题“已知,如图:正方形ABCD,AC是对角线,点P是AC上一点,连接PB,以..”主要考查你对 直角三角形的性质及判定,正方形,正方形的性质,正方形的判定 等考点的理解。关于这些考点的“档案”如下:
直角三角形的性质及判定正方形,正方形的性质,正方形的判定
考点名称:直角三角形的性质及判定
直角三角形性质:
直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
性质5:
如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
(1)(AD)2=BD·DC。
(2)(AB)2=BD·BC。
(3)(AC)2=CD·BC。
性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
性质7:如图,1/AB2+1/AC2=1/AD2
性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
性质9:直角三角形直角上的角平分线与斜边的交点D 则 BD:DC=AB:AC
直角三角形的判定方法:
判定1:定义,有一个角为90°的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)
考点名称:正方形,正方形的性质,正方形的判定
正方形的性质:
1、边:两组对边分别平行;四条边都相等;相邻边互相垂直
2、内角:四个角都是90°;
3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;
4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴);
5、正方形具有平行四边形、菱形、矩形的一切性质;
6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;
正方形的两条对角线把正方形分成四个全等的等腰直角三角形;
7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;
正方形外接圆面积大约是正方形面积的157%。
8、正方形是特殊的长方形。
正方形的判定:
判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形,再证明它是菱形(或矩形),最后证明它是矩形(或菱形)。
1:对角线相等的菱形是正方形。
2:有一个角为直角的菱形是正方形。
3:对角线互相垂直的矩形是正方形。
4:一组邻边相等的矩形是正方形。
5:一组邻边相等且有一个角是直角的平行四边形是正方形。
6:对角线互相垂直且相等的平行四边形是正方形。
7:对角线相等且互相垂直平分的四边形是正方形。
8:一组邻边相等,有三个角是直角的四边形是正方形。
9:既是菱形又是矩形的四边形是正方形。
有关计算公式:
若S为正方形的面积,C为正方形的周长,a为正方形的边长,则
正方形面积计算公式:S =a×a(即a的2次方或a的平方),或S=对角线×对角线÷2;
正方形周长计算公式: C=4a 。
S正方形=。(正方形边长为a,对角线长为b)
http://www.00-edu.com/ks/shuxue/2/160/2020-05-20/1995030.html十二生肖十二星座