零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 直角三角形的性质及判定 > 正文 返回 打印

如图,Rt△ACB中,∠ACB=90°,∠ABC的角平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点-数学

[db:作者]  2020-05-20 00:00:00  零零社区

题文

如图,Rt△ACB中,∠ACB=90°,∠ABC的角平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD-AH=AB;④DG=AP+GH.其中正确的是(  )
A.①②③B.①②④C.②③④D.①②③④

题型:单选题  难度:偏易

答案

①∵∠ABC的角平分线BE和∠BAC的外角平分线,
∴∠ABP=
1
2
∠ABC,
∠CAP=
1
2
(90°+∠ABC)=45°+
1
2
∠ABC,
在△ABP中,∠APB=180°-∠BAP-∠ABP,
=180°-(45°+
1
2
∠ABC+90°-∠ABC)-
1
2
∠ABC,
=180°-45°-
1
2
∠ABC-90°+∠ABC-
1
2
∠ABC,
=45°,故本小题正确;
②③∵∠ACB=90°,PF⊥AD,
∴∠FDP+∠HAP=90°,∠AHP+∠HAP=90°,
∴∠AHP=∠FDP,
∵PF⊥AD,
∴∠APH=∠FPD=90°,
在△AHP与△FDP中,

∠AHP=∠FDP
∠APH=∠FPD=90°
AP=PF

∴△AHP≌△FDP(AAS),
∴DF=AH,
∵AD为∠BAC的外角平分线,∠PFD=∠HAP,
∴∠PAE+∠BAP=180°,
又∵∠PFD+∠BFP=180°,
∴∠PAE=∠PFD,
∵∠ABC的角平分线,
∴∠ABP=∠FBP,
在△ABP与△FBP中,

∠PAE=∠PFD
∠ABP=∠FBP
PB=PB

∴△ABP≌△FBP(AAS),
∴AB=BF,AP=PF故②小题正确;
∵BD=DF+BF,
∴BD=AH+AB,
∴BD-AH=AB,故③小题正确;
④∵PF⊥AD,∠ACB=90°,
∴AG⊥DH,
∵AP=PF,PF⊥AD,
∴∠PAF=45°,
∴∠ADG=∠DAG=45°,
∴DG=AG,
∵∠PAF=45°,AG⊥DH,
∴△ADG与△FGH都是等腰直角三角形,
∴DG=AG,GH=GF,
∴DG=GH+AF,
∵AF>AP,
∴DG=AP+GH不成立,故本小题错误,
综上所述①②③正确.
故选A.

据专家权威分析,试题“如图,Rt△ACB中,∠ACB=90°,∠ABC的角平分线BE和∠BAC的外角平分线..”主要考查你对  直角三角形的性质及判定  等考点的理解。关于这些考点的“档案”如下:

直角三角形的性质及判定

考点名称:直角三角形的性质及判定

  • 直角三角形定义:
    有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。

  • 直角三角形性质:
    直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
    性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
    性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
    性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
    性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
    性质5:

    如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
    (1)(AD)2=BD·DC。
    (2)(AB)2=BD·BC。
    (3)(AC)2=CD·BC。
    性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
    在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
    性质7:如图,1/AB2+1/AC2=1/AD2
    性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
    性质9:直角三角形直角上的角平分线与斜边的交点D 则    BD:DC=AB:AC

  • 直角三角形的判定方法:
    判定1:定义,有一个角为90°的三角形是直角三角形。
    判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
    判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
    判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
    判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
    判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
    判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)



http://www.00-edu.com/ks/shuxue/2/160/2020-05-20/1995301.html十二生肖
十二星座