题文
答案
据专家权威分析,试题“在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为..”主要考查你对 等腰三角形的性质,等腰三角形的判定,垂直平分线的性质 等考点的理解。关于这些考点的“档案”如下:
等腰三角形的性质,等腰三角形的判定垂直平分线的性质
考点名称:等腰三角形的性质,等腰三角形的判定
等腰三角形的性质:1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。4.等腰三角形底边上的垂直平分线到两条腰的距离相等。5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。8.等腰三角形中腰的平方等于高的平方加底的一半的平方9.等腰三角形中腰大于高10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)
等腰三角形的判定:1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。
考点名称:垂直平分线的性质
尺规作法:(用圆规作图)1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。得到两个交点(两交点交与线段的异侧)。3、连接这两个交点。原理:等腰三角形的高垂直平分底边。