题文
如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q. (1 )如图①,当点Q 在线段AC 上,且AP=AQ 时,求证:△BPE ≌△CQE ; (2 )如图②,当点Q 在线段CA 的延长线上时,求证:△BPE ∽△CEQ ;并求当BP= ,CQ=时,P、Q两点间的距离 (用含的代数式表示). |
|
题型:解答题 难度:中档
答案
(1)证明:∵△ABC是等腰直角三角形, ∴∠B=∠C=45°,AB=AC, ∵AP=AQ, ∴BP=CQ, ∵E是BC的中点, ∴BE=CE,在△BPE和△CQE中, ∵, ∴△BPE≌△CQE(SAS); (2)解:∵△ABC和△DEF是两个全等的等腰直角三角形, ∴∠B=∠C=∠DEF=45°, ∵∠BEQ=∠EQC+∠C, 即∠BEP+∠DEF=∠EQC+∠C, ∴∠BEP+45°=∠EQC+45°, ∴∠BEP=∠EQC, ∴△BPE∽△CEQ, ∴, ∵BP=a,CQ=a,BE=CE, ∴BE=CE=a, ∴BC=3a, ∴AB=AC=BCsin45°=3a, ∴AQ=CQ﹣AC=a,PA=AB﹣BP=2a, 连接PQ, 在Rt△APQ中,PQ==a. |
|
据专家权威分析,试题“如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△..”主要考查你对 等腰三角形的性质,等腰三角形的判定,三角形全等的判定,相似三角形的判定 等考点的理解。关于这些考点的“档案”如下:
等腰三角形的性质,等腰三角形的判定三角形全等的判定相似三角形的判定
考点名称:等腰三角形的性质,等腰三角形的判定 考点名称:三角形全等的判定 考点名称:相似三角形的判定
|