零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 等腰三角形的性质,等腰三角形的判定 > 正文 返回 打印

如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,有下面3个结论:①射线BD是∠ABC的角平分线;②△BCD是等腰三角形;③△AMD≌△BCD.(1)判断其中正确的结论是哪几个?(2-八年级数学

[db:作者]  2020-05-20 00:00:00  互联网

题文

如图,已知AB =AC,∠A =36°,AB的中垂线MN交AC于点D,交AB于点M,有下面3个结论:
①射线BD是∠ABC的角平分线;
②△BCD是等腰三角形;
③△AMD≌△BCD.
(1)判断其中正确的结论是哪几个?
(2)从你认为是正确的结论中选一个加以证明.
题型:解答题  难度:中档

答案

解:(1)判断其中正确的结论是:①②.     
 (2)选①射线BD是ABC的角平分线,      
证明:∵AB=AC,
ABC=C。
又∵A =36.     
 ∴ABC= C=72
又∵MN垂直平分AB,     
 ∴AD=BD,
ABD=A= 36
ABD=ABC.     
 ∴射线BD是ABC的角平分线。

据专家权威分析,试题“如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,有..”主要考查你对  等腰三角形的性质,等腰三角形的判定,三角形全等的判定  等考点的理解。关于这些考点的“档案”如下:

等腰三角形的性质,等腰三角形的判定三角形全等的判定

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

考点名称:三角形全等的判定

  • 三角形全等判定定理:
    1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了
    三角形具有稳定性的原因。
    2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
    3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
    4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)
    5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以:SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
    注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。

  • 三角形全等的判定公理及推论:
    (1)“边角边”简称“SAS”
    (2)“角边角”简称“ASA”
    (3)“边边边”简称“SSS”
    (4)“角角边”简称“AAS”
    注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。

    要验证全等三角形,不需验证所有边及所有角也对应地相同。
    以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:
    ①S.S.S. (边、边、边):
    各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。
    ②S.A.S. (边、角、边):
    各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。
    ③A.S.A. (角、边、角):
    各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。
    ④A.A.S. (角、角、边):
    各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。
    ⑤R.H.S. / H.L. (直角、斜边、边):
    各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。 但并非运用任何三个相等的部分便能判定三角形是否全等。以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形:
    ⑥A.A.A. (角、角、角):
    各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。
    ⑦A.S.S. (角、边、边):
    各三角形的其中一个角都相等,且其余的两条边(没有夹着该角),但这并不能判定全等三角形,除非是直角三角形。
    但若是直角三角形的话,应以R.H.S.来判定。

  • 解题技巧:
    一般来说考试中线段和角相等需要证明全等。
    因此我们可以来采取逆思维的方式。
    来想要证全等,则需要什么条件:要证某某边等于某某边,那么首先要证明含有那两个边的三角形全等。
    然后把所得的等式运用(AAS/ASA/SAS/SSS/HL)证明三角形全等。
    有时还需要画辅助线帮助解题。常用的辅助线有:倍长中线,截长补短等。
    分析完毕以后要注意书写格式,在全等三角形中,如果格式不写好那么就容易出现看漏的现象。



http://www.00-edu.com/ks/shuxue/2/161/2020-05-20/1996993.html十二生肖
十二星座