零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 等腰三角形的性质,等腰三角形的判定 > 正文 返回 打印

在△ABC中,AB=AC,AD和CE是高,它们所在的直线相交于H.(1)若∠BAC=45°(如图①),求证:AH=2BD;(2)若∠BAC=135°(如图②),(1)中的结论是否依然成立?请在图②中画出图形并证明你的结-数学

[db:作者]  2020-05-20 00:00:00  互联网

题文

在△ABC中,AB=AC,AD和CE是高,它们所在的直线相交于H.
(1)若∠BAC=45°(如图①),求证:AH=2BD;
(2)若∠BAC=135°(如图②),(1)中的结论是否依然成立?请在图②中画出图形并证明你的结论.


题型:解答题  难度:中档

答案



证明:(1)∵AB=AC,AD⊥BC,
∴BC=2BD.
∵CE⊥AB,∠BAC=45°,
∴∠ECA=45°.
∴AE=CE.
又AD⊥BC,CE⊥AB,
可得∠EAH=∠ECB,
在△AEH和△CEB中,

∠EAH=∠ECB
AE=CE
∠AEH=∠BEC

∴△AEH≌△CEB(ASA).
∴AH=BC.
∴AH=2BD.

(2)答:(1)中结论依然成立.
所画图形如图所示.延长BA交HC于E.
∵∠BAC=135°,
∴∠CAE=45°.
∵AE⊥HC,
∴∠ACE=∠CAE=45°.
∴AE=CE.
∵HD⊥BC,BE⊥HC,
可得∠B=∠H.
在Rt△BEC和Rt△HEA中,

∠B=∠H
∠EC=∠HEA
CE=AE

∴Rt△BEC≌Rt△HEA(AAS).
∴AH=BC.
又BC=2BD,
∴AH=2BD.

据专家权威分析,试题“在△ABC中,AB=AC,AD和CE是高,它们所在的直线相交于H.(1)若∠BAC..”主要考查你对  等腰三角形的性质,等腰三角形的判定  等考点的理解。关于这些考点的“档案”如下:

等腰三角形的性质,等腰三角形的判定

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。



http://www.00-edu.com/ks/shuxue/2/161/2020-05-20/1997946.html十二生肖
十二星座