零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 等腰三角形的性质,等腰三角形的判定 > 正文 返回 打印

一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是()A.13B.17C.22D.17或22-数学

[db:作者]  2020-05-20 00:00:00  零零社区

题文

一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是(  )
A.13B.17C.22D.17或22
题型:单选题  难度:偏易

答案

①若4为腰长,9为底边长,
由于4+4<9,则三角形不存在;
②9为腰长,则符合三角形的两边之和大于第三边.
所以这个三角形的周长为9+9+4=22.
故选C.

据专家权威分析,试题“一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是()A...”主要考查你对  等腰三角形的性质,等腰三角形的判定,三角形的三边关系  等考点的理解。关于这些考点的“档案”如下:

等腰三角形的性质,等腰三角形的判定三角形的三边关系

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

考点名称:三角形的三边关系

  • 三角形的三边关系:
    在三角形中,任意两边和大于第三边,任意两边差小于第三边。
    设三角形三边为a,b,c

    a+b>c
    a+c>b
    b+c>a
    a-b<c
    a-c<b
    b-c<a
    在直角三角形中,设a、b为直角边,c为斜边。
    则两直角边的平方和等于斜边平方。
    在等边三角形中,a=b=c
    在等腰三角形中, a,b为两腰,则a=b
    在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2-2abcosc

  • 三角形的三边关系定理及推论:
    (1)三角形三边关系定理:三角形的两边之和大于第三边。
    推论:三角形的两边之差小于第三边。
    (2)三角形三边关系定理及推论的作用:
    ①判断三条已知线段能否组成三角形;
    ②当已知两边时,可确定第三边的范围;
    ③证明线段不等关系。



http://www.00-edu.com/ks/shuxue/2/161/2020-05-20/1998548.html十二生肖
十二星座