零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 等腰三角形的性质,等腰三角形的判定 > 正文 返回 打印

下列说法不正确的是()A.角平分线上的点到这个角两条边的距离相等B.线段的垂直平分线上的点到这条线段的两个端点的距离相等C.圆有无数条对称轴D.等腰三角形的对称轴是底角的平-数学

[db:作者]  2020-05-20 00:00:00  互联网

题文

下列说法不正确的是(  )
A.角平分线上的点到这个角两条边的距离相等
B.线段的垂直平分线上的点到这条线段的两个端点的距离相等
C.圆有无数条对称轴
D.等腰三角形的对称轴是底角的平分线所在的直线
题型:单选题  难度:中档

答案

A、是角平分线的性质,正确;
B、是线段的垂直平分线的性质,正确;
C、圆是轴对称图形,过圆心的每一条直线都是它的对称轴,正确;
D、等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线,而不是底角的平分线所在的直线,错误.
故选D.

据专家权威分析,试题“下列说法不正确的是()A.角平分线上的点到这个角两条边的距离相等..”主要考查你对  等腰三角形的性质,等腰三角形的判定,圆的认识,角平分线的性质,垂直平分线的性质  等考点的理解。关于这些考点的“档案”如下:

等腰三角形的性质,等腰三角形的判定圆的认识角平分线的性质垂直平分线的性质

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

考点名称:圆的认识

  • 圆的定义:
    圆是一种几何图形。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。
    在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

    相关定义:
    1 在同一平面内,到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心。图形一周的长度,就是圆的周长。
    2 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。
    3 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。直径所在的直线是圆的对称轴。
    4 连接圆上任意两点的线段叫做弦。最长的弦是直径,直径是过圆心的弦。
    5 圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,优弧是用三个字母表示。小于半圆的弧称为劣弧,劣弧用两个字母表示。半圆既不是优弧,也不是劣弧。优弧是大于180度的弧,劣弧是小于180度的弧。
    6 由两条半径和一段弧围成的图形叫做扇形。
    7 由弦和它所对的一段弧围成的图形叫做弓形。
    8 顶点在圆心上的角叫做圆心角。
    9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
    10 圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用π表示,π=3.14159265……在实际应用中,一般取π≈3.14。
    11圆周角等于相同弧所对的圆心角的一半。
    12 圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。

    圆的集合定义:

    圆是平面内到定点的距离等于定长的点的集合,其中定点是圆心,定长是半径。

  • 圆的字母表示:
    以点O为圆心的圆记作“⊙O”,读作O”。
    圆—⊙ ;
    半径—r或R(在环形圆中外环半径表示的字母);
    弧—⌒ ;
    直径—d ;
    扇形弧长—L ;                            
    周长—C ;                              
    面积—S。

    圆的性质:
    (1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
    圆也是中心对称图形,其对称中心是圆心。
    垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
    逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
    (2)有关圆周角和圆心角的性质和定理
    ① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
    ②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
    直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
    圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。
    即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
    ③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
    (3)有关外接圆和内切圆的性质和定理
    ①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
    ②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
    ③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。
    ④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)
    ⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

    (4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
    (5)弦切角的度数等于它所夹的弧的度数的一半。
    (6)圆内角的度数等于这个角所对的弧的度数之和的一半。
    (7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
    (8)周长相等,圆面积比长方形、正方形、三角形的面积大。

  • 点、线、圆与圆的位置关系:
    点和圆位置关系
    ①P在圆O外,则 PO>r。
    ②P在圆O上,则 PO=r。
    ③P在圆O内,则 0≤PO<r。
    反过来也是如此。

    直线和圆位置关系
    ①直线和圆无公共点,称相离。 AB与圆O相离,d>r。
    ②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d<r。
    ③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)

    圆和圆位置关系
    ①无公共点,一圆在另一圆之外叫外离,在之内叫内含。
    ②有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。
    ③有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
    设两圆的半径分别为R和r,且R〉r,圆心距为P,则结论:外离P>R+r;外切P=R+r;内含P<R-r;
    内切P=R-r;相交R-r<P<R+r。

  • 圆的计算公式:
    1.圆的周长C=2πr=或C=πd
    2.圆的面积S=πr2
    3.扇形弧长L=圆心角(弧度制)× r = n°πr/180°(n为圆心角)
    4.扇形面积S=nπ r2/360=Lr/2(L为扇形的弧长)
    5.圆的直径 d=2r
    6.圆锥侧面积 S=πrl(l为母线长)
    7.圆锥底面半径 r=n°/360°L(L为母线长)(r为底面半径)

    圆的方程:
    1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是
    (x-a)2+(y-b)2=r2
    特别地,以原点为圆心,半径为r(r>0)的圆的标准方程为x2+y2=r2

    2、圆的一般方程:方程x2+y2+Dx+Ey+F=0可变形为(x+D/2)2+(y+E/2)2=(D2+E2-4F)/4.故有:
    ①当D2+E2-4F>0时,方程表示以(-D/2,-E/2)为圆心,以(√D2+E2-4F)/2为半径的圆;
    ②当D2+E2-4F=0时,方程表示一个点(-D/2,-E/2);
    ③当D2+E2-4F<0时,方程不表示任何图形。

    3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是 x=a+r*cosθ, y=b+r*sinθ, (其中θ为参数)
    圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为 (x-a1)(x-a2)+(y-b1)(y-b2)=0
    圆的离心率e=0,在圆上任意一点的曲率半径都是r。
    经过圆x2+y2=r2上一点M(a0,b0)的切线方程为 a0·x+b0·y=r2
    在圆(x2+y2=r2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0·x+b0·y=r2

  • 圆的历史:
          圆形,是一个看来简单,实际上是十分奇妙的形状。古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。
           约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。
          会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。
           任意一个圆的周长与它直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。它是一个无限不循环小数,π=3.1415926535……但在实际运用中一般只取它的近似值,即π≈3.14.如果用C表示圆的周长:C=πd或C=2πr.《周髀算经》上说"周三径一",把圆周率看成3,但是这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。魏晋时期的刘徽于公元263年给《九章算术》作注时,发现"周三径一"只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,π= 3927/1250。刘徽把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。 在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。现在有了电子计算机,圆周率已经算到了小数点后六十万亿位小数了。

考点名称:角平分线的性质

  • 角平分线:
    三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。由定义可知,三角形的角平分线是一条线段。由于三角形有三个内角,所以三角形有三条角平分线。三角形的角平分线交点一定在三角形内部。

  • 角平方线定理:
    ①角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。
    ②角平分线能得到相同的两个角,都等于该角的一半。
    ③三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
    ④三角形的三个角的角平分线相交于一点,这个点称为内心 ,即以此点为圆心可以在三角形内部画一个内切圆。
    逆定理:
    在角的内部,到角两边的距离相等的点在角平分线上。

  • 角平分线作法:
    在角AOB中,画角平分线

    方法一:
    1.以点O为圆心,以任意长为半径画弧,两弧交角AOB两边于点M,N。
    2.分别以点M,N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。
    3.作射线OP。
    则射线OP为角AOB的角平分线。
    当然,角平分线的作法有很多种。下面再提供一种尺规作图的方法供参考。

    方法二:
    1.在两边OA、OB上分别截取OM、OA和ON、OB,且使得OM=ON,OA=OB;
    2.连接AN与BM,他们相交于点P;
    3.作射线OP。
    则射线OP为角AOB的角平分线。

考点名称:垂直平分线的性质

  • 垂直平分线的概念:
    垂直于一条线段并且平分这条线段的直线,叫做这条线段的垂直平分线(中垂线)。
    如图:直线MN即为线段AB的垂直平分线。

  • 垂直平分线的性质:
    1.垂直平分线垂直且平分其所在线段。
    2.垂直平分线上任意一点,到线段两端点的距离相等。
    逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
    3.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
    4.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相 等。
    (此时以外心为圆心,外心到顶点的长度为半径,所作的圆为此三角形的外接圆。)

    判定:
    ①利用定义;
    ②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
    (即线段垂直平分线可以看成到线段两端点距离相等的点的集合)

  • 尺规作法:(用圆规作图)
    1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。
    2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。得到两个交点(两交点交与线段的异侧)。
    3、连接这两个交点。
    原理:等腰三角形的高垂直平分底边。



http://www.00-edu.com/ks/shuxue/2/161/2020-05-20/1998622.html十二生肖
十二星座