题文
答案
据专家权威分析,试题“P为正方形ABCD内部一点,且PA=PD=AD,则△PBC为()。-八年级数学-魔..”主要考查你对 等边三角形,正方形,正方形的性质,正方形的判定 等考点的理解。关于这些考点的“档案”如下:
等边三角形正方形,正方形的性质,正方形的判定
考点名称:等边三角形
性质:①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)
判定方法:①三边相等的三角形是等边三角形(定义)②三个内角都相等(为60度)的三角形是等边三角形③有一个角是60度的等腰三角形是等边三角形④ 两个内角为60度的三角形是等边三角形说明:可首先考虑判断三角形是等腰三角形。等边三角形的性质与判定理解:首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。
等比三角形的尺规做法:可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。
考点名称:正方形,正方形的性质,正方形的判定
正方形的性质:1、边:两组对边分别平行;四条边都相等;相邻边互相垂直2、内角:四个角都是90°;3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴);5、正方形具有平行四边形、菱形、矩形的一切性质;6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把正方形分成四个全等的等腰直角三角形;7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;正方形外接圆面积大约是正方形面积的157%。8、正方形是特殊的长方形。
正方形的判定:判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形,再证明它是菱形(或矩形),最后证明它是矩形(或菱形)。 1:对角线相等的菱形是正方形。2:有一个角为直角的菱形是正方形。3:对角线互相垂直的矩形是正方形。4:一组邻边相等的矩形是正方形。5:一组邻边相等且有一个角是直角的平行四边形是正方形。6:对角线互相垂直且相等的平行四边形是正方形。7:对角线相等且互相垂直平分的四边形是正方形。8:一组邻边相等,有三个角是直角的四边形是正方形。9:既是菱形又是矩形的四边形是正方形。有关计算公式:若S为正方形的面积,C为正方形的周长,a为正方形的边长,则正方形面积计算公式:S =a×a(即a的2次方或a的平方),或S=对角线×对角线÷2;正方形周长计算公式: C=4a 。S正方形=。(正方形边长为a,对角线长为b)