题文
[ ]
答案
据专家权威分析,试题“如图,四边形ABCD中,AB=BD=DA=AC,则四边形ABCD中,最大的内角的..”主要考查你对 等边三角形,等腰三角形的性质,等腰三角形的判定 等考点的理解。关于这些考点的“档案”如下:
等边三角形等腰三角形的性质,等腰三角形的判定
考点名称:等边三角形
性质:①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)
判定方法:①三边相等的三角形是等边三角形(定义)②三个内角都相等(为60度)的三角形是等边三角形③有一个角是60度的等腰三角形是等边三角形④ 两个内角为60度的三角形是等边三角形说明:可首先考虑判断三角形是等腰三角形。等边三角形的性质与判定理解:首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。
等比三角形的尺规做法:可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。
考点名称:等腰三角形的性质,等腰三角形的判定
等腰三角形的性质:1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。4.等腰三角形底边上的垂直平分线到两条腰的距离相等。5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。8.等腰三角形中腰的平方等于高的平方加底的一半的平方9.等腰三角形中腰大于高10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)
等腰三角形的判定:1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。