题文
如图,点C是线段AB上的一个动点,△ADC和△CEB是在AB同侧的两个等边三角形,DM,EN分别是△ADC和△CEB的高,点C在线段AB上沿着从点A向点B的方向移动(不与点A,B重合),连接DE,若AB=1,则四边形DMNE面积为( )
A.
B.
C.
D.
答案
据专家权威分析,试题“如图,点C是线段AB上的一个动点,△ADC和△CEB是在AB同侧的两个等边..”主要考查你对 等边三角形,梯形,梯形的中位线 等考点的理解。关于这些考点的“档案”如下:
等边三角形梯形,梯形的中位线
考点名称:等边三角形
性质:①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)
判定方法:①三边相等的三角形是等边三角形(定义)②三个内角都相等(为60度)的三角形是等边三角形③有一个角是60度的等腰三角形是等边三角形④ 两个内角为60度的三角形是等边三角形说明:可首先考虑判断三角形是等腰三角形。等边三角形的性质与判定理解:首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。
等比三角形的尺规做法:可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。
考点名称:梯形,梯形的中位线
梯形性质:①梯形的上下两底平行;②梯形的中位线(两腰中点相连的线叫做中位线)平行于两底并且等于上下底和的一半。③等腰梯形对角线相等。
梯形判定:1.一组对边平行,另一组对边不平行的四边形是梯形。2.一组对边平行且不相等的四边形是梯形。梯形中位线定理:梯形中位线平行于两底,并且等于两底和的一半。 梯形中位线×高=(上底+下底)×高=梯形面积梯形中位线到上下底的距离相等中位线长度=(上底+下底)梯形的周长与面积:梯形的周长公式:上底+下底+腰+腰,用字母表示:a+b+c+d。等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+b+2c。梯形的面积公式:(上底+下底)×高÷2,用字母表示:S=(a+b)×h。变形1:h=2s÷(a+b);变形2:a=2s÷h-b;变形3:b=2s÷h-a。另一计算梯形的面积公式: 中位线×高,用字母表示:L·h。对角线互相垂直的梯形面积为:对角线×对角线÷2。
梯形的分类:等腰梯形:两腰相等的梯形。 直角梯形:有一个角是直角的梯形。 等腰梯形的性质:(1)等腰梯形的同一底边上的两个角相等。 (2)等腰梯形的对角线相等。 (3)等腰梯形是轴对称图形。 等腰梯形的判定:(1)定义:两腰相等的梯形是等腰梯形 (2)定理:在同一底上的两个角相等的梯形是等腰梯形 (3)对角线相等的梯形是等腰梯形。