题文
如图所示,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
A.
B.
C.6
D.3
答案
据专家权威分析,试题“如图所示,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形..”主要考查你对 等边三角形,轴对称,正方形,正方形的性质,正方形的判定 等考点的理解。关于这些考点的“档案”如下:
等边三角形轴对称正方形,正方形的性质,正方形的判定
考点名称:等边三角形
性质:①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)
判定方法:①三边相等的三角形是等边三角形(定义)②三个内角都相等(为60度)的三角形是等边三角形③有一个角是60度的等腰三角形是等边三角形④ 两个内角为60度的三角形是等边三角形说明:可首先考虑判断三角形是等腰三角形。等边三角形的性质与判定理解:首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。
等比三角形的尺规做法:可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。
考点名称:轴对称
轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等;(3)关于某直线对称的两个图形是全等图形。
轴对称的判定:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。这样就得到了以下性质: 1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。 4.对称轴是到线段两端距离相等的点的集合。
轴对称作用:可以通过对称轴的一边从而画出另一边。 可以通过画对称轴得出的两个图形全等。 扩展到轴对称的应用以及函数图像的意义。
轴对称的应用:关于平面直角坐标系的X,Y对称意义如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。 相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。
关于二次函数图像的对称轴公式(也叫做轴对称公式 )设二次函数的解析式是 y=ax2+bx+c 则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a
在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。譬如,等腰三角形经常添设顶角平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形,菱形问题经常添设对角线等等。另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。
考点名称:正方形,正方形的性质,正方形的判定
正方形的性质:1、边:两组对边分别平行;四条边都相等;相邻边互相垂直2、内角:四个角都是90°;3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴);5、正方形具有平行四边形、菱形、矩形的一切性质;6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把正方形分成四个全等的等腰直角三角形;7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;正方形外接圆面积大约是正方形面积的157%。8、正方形是特殊的长方形。
正方形的判定:判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形,再证明它是菱形(或矩形),最后证明它是矩形(或菱形)。 1:对角线相等的菱形是正方形。2:有一个角为直角的菱形是正方形。3:对角线互相垂直的矩形是正方形。4:一组邻边相等的矩形是正方形。5:一组邻边相等且有一个角是直角的平行四边形是正方形。6:对角线互相垂直且相等的平行四边形是正方形。7:对角线相等且互相垂直平分的四边形是正方形。8:一组邻边相等,有三个角是直角的四边形是正方形。9:既是菱形又是矩形的四边形是正方形。有关计算公式:若S为正方形的面积,C为正方形的周长,a为正方形的边长,则正方形面积计算公式:S =a×a(即a的2次方或a的平方),或S=对角线×对角线÷2;正方形周长计算公式: C=4a 。S正方形=。(正方形边长为a,对角线长为b)