零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 等边三角形 > 正文 返回 打印

阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(直接给出结论,不必证明)(2)在Rt-数学

[db:作者]  2020-05-20 00:00:00  零零社区

题文

阅读下面的情景对话,然后解答问题:
(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(直接给出结论,不必证明)
(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c.


题型:解答题  难度:中档

答案

(1)设等边三角形的一边为a,则a2+a2=2a2
∴符合奇异三角形”的定义.
∴是真命题;
(2)∵∠C=90°,
则a2+b2=c2①,
∵Rt△ABC是奇异三角形,且b>a,
∴a2+c2=2b2②,
由①②得:b=

2
a,c=

3
a,
∴a:b:c=1:

2

3

据专家权威分析,试题“阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,..”主要考查你对  等边三角形,勾股定理,命题,定理  等考点的理解。关于这些考点的“档案”如下:

等边三角形勾股定理命题,定理

考点名称:等边三角形

  • 等边三角形定义:
    三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。是特殊的等腰三角形。
    如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:
    1.三边长度相等;
    2.三个内角度数均为60度;
    3.一个内角为60度的等腰三角形。

  • 性质:
    ①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
    ②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
    ③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
    ④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
    ⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)

  • 判定方法:
    ①三边相等的三角形是等边三角形(定义)
    ②三个内角都相等(为60度)的三角形是等边三角形
    ③有一个角是60度的等腰三角形是等边三角形
    ④ 两个内角为60度的三角形是等边三角形
    说明:可首先考虑判断三角形是等腰三角形。

    等边三角形的性质与判定理解:
    首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
    其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

    等比三角形的尺规做法:
    可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。

考点名称:勾股定理

  • 勾股定理:
    直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,如果直角三角形的两直角边长分别为a,b,斜边长为c,那么
    勾股定理只适用于直角三角形,应用于解决直角三角形中的线段求值问题。

  • 定理作用
    ⑴勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。
    ⑵勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。
    ⑶勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。
    ⑷勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,包括著名的费尔马大定理,另一方面也为不定方程的解题程序树立了一个范式。

  • 勾股定理的应用:
    数学
    从勾股定理出发开平方、开立方、求圆周率等,运用勾股定理数学家还发现了无理数。
    勾股定理在几何学中的实际应用非常广泛,较早的应用案例有《九章算术》中的一题:“今有池,芳一丈,薛生其中央,出水一尺,引薛赴岸,适与岸齐,问水深几何?答曰:"一十二尺"。

    生活
    勾股定理在生活中的应用也较广泛,举例说明如下:
    1、挑选投影设备时需要选择最佳的投影屏幕尺寸。以教室为例,最佳的屏幕尺寸主要取决于使用空间的面积,从而计划好学生座位的多少和位置的安排。选购的关键则是选择适合学生的屏幕而不是选择适合投影机的屏幕,也就是说要把学生的视觉感受放在第一位。一般来说在选购时可参照三点:
    第一,屏幕高度大约等于从屏幕到学生最后一排座位的距离的1/6;
    第二,屏幕到第一排座位的距离应大于2倍屏幕的高度;
    第三,屏幕底部应离观众席所在地面最少122厘米。
    屏幕的尺寸是以其对角线的大小来定义的。一般视频图像的宽高比为4:3,教育幕为正方形。如一个72英寸的屏幕,根据勾股定理,很快就能得出屏幕的宽为1.5m,高为1.1m。
    2、2005年珠峰高度复测行动。
    测量珠峰的一种方法是传统的经典测量方法,就是把高程引到珠峰脚下,当精确高程传递至珠峰脚下的6个峰顶交会测量点时,通过在峰顶竖立的测量觇标,运用“勾股定理”的基本原理测定珠峰高程,配合水准测量、三角测量、导线测量等方式,获得的数据进行重力、大气等多方面改正计算,最终得到珠峰高程的有效数据。
    通俗来说,就是分三步走:
    第一步,先在珠峰脚下选定较容易的、能够架设水准仪器的测量点,先把这些点的精确高程确定下来;
    第二步,在珠峰峰顶架起觇标,运用三角几何学中“勾股定理”的基本原理,推算出珠峰峰顶相对于这几个点的高程差;
    第三步,获得的高程数据要进行重力、大气等多方面的改正计算,最终确定珠峰高程测量的有效数据。

考点名称:命题,定理

  • 命题的概念:
    判断一件事情的语句,叫做命题。
    命题的概念包括两层含义:
    (1)命题必须是个完整的句子;
    (2)这个句子必须对某件事情做出判断。

    公理:
    人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。

    定理:
    通过真命题(公理或其他已被证明的定理)出发,经过受逻辑限制的演绎推导,证明为正确的结论的命题或公式,例如“平行四边形的对边相等”就是平面几何中的一个定理。
    一般来说,在数学中,只有重要或有趣的陈述才叫定理,证明定理是数学的中心活动。相信为真但未被证明的数学叙述为猜想,当它被证明为真后便是定理。它是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述,可以不经过证明成为猜想的过程,成为定理。
    如上所述,定理需要某些逻辑框架,继而形成一套公理(公理系统)。同时,一个推理的过程,容许从公理中引出新定理和其他之前发现的定理。
    在命题逻辑中,所有已证明的叙述都称为定理。

    经过长期实践后公认为正确的命题叫做公理,用推理的方法判断为正确的命题叫做定理。

  • 命题的分类:
    (按正确、错误与否分)分为真命题(正确的命题),假命题(错误的命题),
    所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
    所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

    四种命题:
    1.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。
    2.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。
    3.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。

    相互关系:
    1.四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。
    2.四种命题的真假关系:
    ①两个命题互为逆否命题,它们有相同的真假性。
    ②两个命题为互逆命题或互否命题,它们的真假性没有关系(原命题与逆否命题同真同假,逆命题与否命题同真同假)

    定理结构:
    定理一般都有一个设定——一大堆条件。然后它有结论——一个在条件下成立的数学叙述。
    通常写作「若条件,则结论」。用符号逻辑来写就是条件→结论。而当中的证明不视为定理的成分。
    逆定理:
    若存在某叙述为A→B,其逆叙述就是B→A。逆叙述成立的情况是A←→B,否则通常都是倒果为因,不合常理。若某叙述是定理,其成立的逆叙述就是逆定理。
    若某叙述和其逆叙述都为真,条件必要且充足。 若某叙述为真,其逆叙述为假,条件充足。 若某叙述为假,其逆叙述为真,条件必要。

  • 常用数学定理:
    1、每份数×份数=总数
    总数÷每份数=份数
    总数÷份数=每份数
    2、1倍数×倍数=几倍数
    几倍数÷1倍数=倍数
    几倍数÷倍数=1倍数
    3、速度×时间=路程
    路程÷速度=时间
    路程÷时间=速度
    4、单价×数量=总价
    总价÷单价=数量
    总价÷数量=单价
    5 、工作效率×工作时间=工作总量
    工作总量÷工作效率=工作时间
    工作总量÷工作时间=工作效率
    6 、加数+加数=和
    和-一个加数=另一个加数
    7 、被减数-减数=差
    被减数-差=减数
    差+减数=被减数
    8 、因数×因数=积
    积÷一个因数=另一个因数
    9、 被除数÷除数=商
    被除数÷商=除数
    商×除数=被除数

    小学数学图形计算公式:
    1 、正方形 C周长 S面积 a边长
    周长=边长×4 ;C=4a;
    面积=边长×边长; S=a×a
    2 、正方体 V:体积 a:棱长
    表面积=棱长×棱长×6; S棱=a×a×6 ;
    体积=棱长×棱长×棱长; V=a×a×a
    3、 长方形 C周长 S面积 a边长
    周长=(长+宽)×2 ;C=2(a+b) ;
    面积=长×宽 ;S=ab
    4 、长方体 V:体积 s:面积 a:长 b: 宽 c:高
    表面积(长×宽+长×高+宽×高)×2; S=2(ab+bc+ca);
    体积=长×宽×高 ;V=abc
    5、 三角形 s面积 a底 h高
    面积=底×高÷2 ;s=ah÷2
    三角形高=面积 ×2÷底
    三角形底=面积 ×2÷高
    6、 平行四边形 s面积 a底 h高
    面积=底×高 s=ah
    7、 梯形 s面积 a上底 b下底 h高
    面积=(上底+下底)×高÷2;s=(a+b)× h÷2
    8、 圆形 S面积 C周长 ∏ d=直径 r=半径
    周长=直径×∏=2×∏×半径; C=∏d=2∏r ;
    面积=半径×半径×∏
    9、 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长
    侧面积=底面周长×高;
    表面积=侧面积+底面积×2 ;
    体积=底面积×高 ;
    体积=侧面积÷2×半径
    10、 圆锥体 v:体积 h:高 s:底面积 r:底面半径
    体积=底面积×高÷3



http://www.00-edu.com/ks/shuxue/2/162/2020-05-20/1993703.html十二生肖
十二星座