零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 等边三角形 > 正文 返回 打印

已知,如图,六边形ABCDEF的各个角都相等,请判断AB+BC与DE+EF的大小,并说明你的理由.-数学

[db:作者]  2020-05-20 00:00:00  零零社区

题文

已知,如图,六边形ABCDEF的各个角都相等,请判断AB+BC与DE+EF的大小,并说明你的理由.

题型:解答题  难度:中档

答案



答:AB+BC=DE+EF,理由:
分别作AB的延长线、CD的反向延长线交于G,作DE/AF的延长线交于H,
∵六边形ABCDEF的各个角都相等,
∴∠A=∠ABC=∠BCD=∠D=∠AFE=∠DEF=120°,
∴∠GBC=∠BCG=∠HFE=∠HEF=60°,
∴△BCD、△HEF是等边三角形,
∴BC=BG,EF=EH,∠G=∠H═60°,
∴∠A+∠G=180°,∠D+∠G=180°,
∴AG∥DH,AH∥GD,
∴四边形AGDH是平行四边形,
∴AG=DH,
∴AB+BC=DE+EF.

据专家权威分析,试题“已知,如图,六边形ABCDEF的各个角都相等,请判断AB+BC与DE+EF的..”主要考查你对  等边三角形,多边形的内角和和外角和  等考点的理解。关于这些考点的“档案”如下:

等边三角形多边形的内角和和外角和

考点名称:等边三角形

  • 等边三角形定义:
    三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。是特殊的等腰三角形。
    如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:
    1.三边长度相等;
    2.三个内角度数均为60度;
    3.一个内角为60度的等腰三角形。

  • 性质:
    ①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
    ②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
    ③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
    ④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
    ⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)

  • 判定方法:
    ①三边相等的三角形是等边三角形(定义)
    ②三个内角都相等(为60度)的三角形是等边三角形
    ③有一个角是60度的等腰三角形是等边三角形
    ④ 两个内角为60度的三角形是等边三角形
    说明:可首先考虑判断三角形是等腰三角形。

    等边三角形的性质与判定理解:
    首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
    其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

    等比三角形的尺规做法:
    可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。

考点名称:多边形的内角和和外角和

  • 在平面内,由若干不在同一直线上的线段首尾顺次连接组成的封闭图形叫做多边形。
    对角线:在多边形中,连接不相邻的两个顶点的线段叫做多边形的对角线。
    外角:多边形的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。
    如图示:

    多边形的内角和:
    n边形的内角和等于(n-2)·180°。(多边形内角和定理)
    多边形的外角和:
    在多边形的每个顶点处取多边形的一个外角,它们的和叫做多边形的外角和。
    多边形的外角和等于360°。(与边数无关) (多边形的外角和定理)

  • 多边形外角和列举:



http://www.00-edu.com/ks/shuxue/2/162/2020-05-20/1993950.html十二生肖
十二星座