首页 > 考试 > 数学 > 初中数学 > 三角形的周长和面积 > 正文 | 返回 打印 |
|
题型:填空题 难度:中档
答案
(1)∵∠ADA′=90°,而∠EDF=90°, ∴DA′绕点D顺时针旋转90度到DA位置,DF绕点D顺时针旋转90度到DE位置, 故填图甲中的△A′DF绕点D顺时针旋转90°得到图乙. (2)设DE=DF=x, ∵DE∥BF, ∴∠ADE=∠B, ∴直角△AED∽直角△DFB, ∴
∴AE=
同理BF=
∴S△AED+S△DFB=
在直角△AED中有,x2+(
∴x2=
∴S△AED+S△DFB=
故填6. |
据专家权威分析,试题“观察图中的甲、乙两图,回答下列问题.(1)请简述由图甲变成图乙的..”主要考查你对 三角形的周长和面积,图形旋转,相似三角形的性质 等考点的理解。关于这些考点的“档案”如下:
三角形的周长和面积图形旋转相似三角形的性质
考点名称:三角形的周长和面积
考点名称:图形旋转
考点名称:相似三角形的性质
相似三角形性质定理:
(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
(6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
(7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项
(8)c/d=a/b 等同于ad=bc.
(9)不必是在同一平面内的三角形里
①相似三角形对应角相等,对应边成比例.
②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
③相似三角形周长的比等于相似比
定理推论:
推论一:顶角或底角相等的两个等腰三角形相似。
推论二:腰和底对应成比例的两个等腰三角形相似。
推论三:有一个锐角相等的两个直角三角形相似。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
http://www.00-edu.com/ks/shuxue/2/163/2020-05-20/1992709.html十二生肖十二星座