首页 > 考试 > 数学 > 初中数学 > 三角形中位线定理 > 正文 | 返回 打印 |
|
题型:解答题 难度:中档
答案
证明:(1)如图,过点F作FH∥BC,交AB于点H, ∵FH∥BC,点F是AC的中点,点E是BC的中点, ∴AH=BH=
∵AD=
∴AD=AH. ∵CA⊥AB, ∴CA是DH的中垂线. ∴DF=FH. ∵FH∥BC,EF∥AB, ∴四边形HFEB是平行四边形. ∴FH=BE. ∴BE=FD. (2)由(1)知BE=FD, 又∵EF∥AD, ∴四边形DBEF是等腰梯形. ∴∠B=∠D. ∵AG∥BC,∠B=∠DAG, ∴∠D=∠DAG. ∴AG=DG. |
据专家权威分析,试题“如图,在△ABC中,∠BAC=90°,延长BA到点D,使AD=12AB,点E、F分别..”主要考查你对 三角形中位线定理,垂直平分线的性质 等考点的理解。关于这些考点的“档案”如下:
三角形中位线定理垂直平分线的性质
考点名称:三角形中位线定理
考点名称:垂直平分线的性质
尺规作法:(用圆规作图)
1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。
2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。得到两个交点(两交点交与线段的异侧)。
3、连接这两个交点。
原理:等腰三角形的高垂直平分底边。
http://www.00-edu.com/ks/shuxue/2/165/2020-05-22/2000647.html十二生肖十二星座