零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 三角形中位线定理 > 正文 返回 打印

如图任意四边形ABCD中,点E、F、G、H分别是AD、BC、BD、AC的中点,当四边形ABCD满足条件______时,四边形EGFH是菱形.(填一个使结论成立的条件)-数学

[db:作者]  2020-05-22 00:00:00  零零社区

题文

如图任意四边形ABCD中,点E、F、G、H分别是AD、BC、BD、AC的中点,当四边形ABCD满足条件______时,四边形EGFH是菱形.(填一个使结论成立的条件)

题型:填空题  难度:中档

答案

需添加条件AB=CD.
证明:∵点E,G分别是AD,BD的中点,
∴EG∥AB,且EG=
1
2
AB同理HF∥AB,且HF=
1
2
AB,
∴EG
.
HF.
∴四边形EGFH是平行四边形.
∵EG=
1
2
AB,
又可同理证得EH=
1
2
CD,
∵AB=CD,
∴EG=EH,
∴四边形EGFH是菱形.
故答案为:AB=CD.

据专家权威分析,试题“如图任意四边形ABCD中,点E、F、G、H分别是AD、BC、BD、AC的中点..”主要考查你对  三角形中位线定理,菱形,菱形的性质,菱形的判定  等考点的理解。关于这些考点的“档案”如下:

三角形中位线定理菱形,菱形的性质,菱形的判定

考点名称:三角形中位线定理

  • 三角形中位线定义:
    连接三角形两边中点的线段叫做三角形的中位线。一个三角形共有三条中位线。
    三角形中位线定理:
    三角形的中位线平行于第三边,并且等于它的一半。

    如图已知△ABC中,D,E分别是AB,AC两边中点。
    则DE平行于BC且等于BC/2

  • 三角形中位线逆定理:

    逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
    如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。
    逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
    如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2

  • 区分三角形的中位线和中线:
    三角形的中位线是连结三角形两边中点的线段;
    三角形的中线是连结一个顶点和它的对边中点的线段。

考点名称:菱形,菱形的性质,菱形的判定

  • 菱形的定义:
    在一个平面内,有一组邻边相等的平行四边形是菱形。

  • 菱形的性质:
    ①菱形具有平行四边形的一切性质;
    ②菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角;
    ③菱形的四条边都相等;
    ④菱形既是轴对称图形(两条对称轴分别是其两条对角线所在的直线),也是中心对称图形(对称中心是其重心,即两对角线的交点);
    ⑤在有一个角是60°角的菱形中,较短的对角线等于边长,较长的对角线是较短的对角线的根号3倍。

  • 菱形的判定:
    在同一平面内,
    (1)定义:有一组邻边相等的平行四边形是菱形
    (2)定理1:四边都相等的四边形是菱形
    (3)定理2:对角线互相垂直的平行四边形是菱形
    菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。
    菱形的面积:S菱形=底边长×高=两条对角线乘积的一半。



http://www.00-edu.com/ks/shuxue/2/165/2020-05-22/2001233.html十二生肖
十二星座