如图所示的是质谱仪工作原理图,带电粒子a、b经相同电压U加速(在A点初速度为零)后,进入磁感应强度为B的匀强磁场做匀速圆周运动,最后分别打在感光板S上的x1、x2处,图中半圆 质谱仪 2023-04-06 查看
质谱仪的工作原理图如图所示,A为粒子加速器,加速电压为U1;M为速度选择器,两板间有相互垂直的匀强磁场和匀强电场,匀强磁场的磁感应强度为B1,两板间距离为d;N为偏转分离 质谱仪 2023-04-06 查看
如图所示为一种质谱仪示意图,位于A处电荷量为q、质量为m的离子(重力不计),从静止开始经加速电场加速后沿图中虚线做匀速圆周运动通过静电分析器,再由P点进入磁分析器后,最 质谱仪 2023-04-06 查看
如图所示是质谱仪的示意图,它可以测定单个离子的质量,图中离子源。s产生带电荷量为q的离子,经电压为U的电场加速后垂直射入磁感应强度为B的匀强磁场中,沿半圆轨道运动到记 质谱仪 2023-04-06 查看
下图是质谱仪的工作原理示意图,带电粒子被加速电场加速后,进入速度选择器,速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E。平板S上有可让粒子通过的狭缝P和记 质谱仪 2023-04-06 查看
质谱分析技术已广泛应用于各前沿科学领域。汤姆孙发现电子的质谱装置示意如图,M、N为两块水平放置的平行金属极板,板长为L,板右端到屏的距离为D,且D远大于L,O'O为垂直于 质谱仪 2023-04-06 查看
质谱仪是用来测定带电粒子质量的一种装置,如图所示,电容器两极板相距为d,两板间电压为U,极板间匀强磁场的磁感应强度为B1,方向垂直纸面向外,一束电荷电量相同质量不同的 质谱仪 2023-04-06 查看
质谱仪是___________重要工具。如图所示为质谱仪的原理示意图,现利用这种质谱议对氢元素进行测量。氢元素的各种同位素从容器A下方的小孔S无初速度飘入电势差为U的加速电场, 质谱仪 2023-04-06 查看
质谱仪的两大重要组成部分是加速电场和偏转磁场,如图所示为质谱仪的原理图,设想有一个静止的质量为m、电荷量为q的带电粒子(不计重力),经电压为U的加速电场加速后垂直进入 质谱仪 2023-04-06 查看
质谱分析技术已广泛应用于各前沿科学领域。汤姆孙发现电子的质谱装置示意如图,M、N为两块水平放置的平行金属极板,板长为L,板右端到屏的距离为D,且D远大于L,O'O为垂直于 质谱仪 2023-04-06 查看
1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖。若速度相同的同一束粒子由左端射入质谱仪后的运动轨迹如图所示,则下列相关说法中正确的是 质谱仪 2023-04-06 查看
下图是质谱仪的工作原理示意图,带电粒子被加速电场加速后,进入速度选择器,速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E。平板S上有可让粒子通过的狭缝P和记 质谱仪 2023-04-06 查看
如图是质谱仪的工作原理示意图。带电粒子被加速电场加速后,进入速度选择器。速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E。平板S上有可让粒子通过的狭缝P和记 质谱仪 2023-04-06 查看
1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖。若速度相同的同一束粒子由左端射入质谱仪后的运动轨迹如图所示,则下列相关说法中正确的是 质谱仪 2023-04-06 查看
飞行时间质谱仪可以根据带电粒子的飞行时间对气体分子进行分析。如图所示,在真空状态下,自脉冲阀P喷出微量气体,经激光照射产生不同正离子,自a板小孔进入a、b间的加速电场 质谱仪 2023-04-06 查看
二十世纪初,卡文迪许实验室(CavendishLaboratory)的英国物理学家阿斯顿首次制成了聚焦性能较高的质谱仪,并用此来对许多元素的同位素及其丰度进行测量,从而肯定了同位素的 质谱仪 2023-04-06 查看
图是质谱仪的工作原理示意图。带电粒子被加速电场加速后,进入速度选择器速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E平板S上有可让粒子通过的狭缝P和记录粒子 质谱仪 2023-04-06 查看
回旋加速器的D形盒半径为R=0.60m,两盒间距为d=0.01cm,用它来加速质子时可使每个质子获得的最大能量为4.0MeV,加速电压为u=2.0×104V,求:(1)该加速器中偏转磁场的磁感应 质谱仪 2023-04-06 查看
如图是质谱仪的工作原理示意图,带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录 质谱仪 2023-04-06 查看