某型号挖掘机的实物图(甲)和作业范围图(乙)以及部分相关数据表,如图所示。挖掘机在4s内将装满铲斗的密度为1.6×103kg/m3的泥土,从最大挖掘深度处送到位于最大卸料高度的装-九年级物理

  • 功,功率和机械效率的比较:
    物理量 物理意义 定义 符号 公式 单位 说明
    做功即能量的转化 有力作用在物体上,并且物体在力的方向上移动了一段距离,就说力对物体做了功 W W=Fs J l. 功率大小由功和时间共同决定,单独强调某一方面是错误的 2.功率和机械效率是两个不同的物理量,它们之问没有直接关系
    功率 做功快慢 单位时间内完成的功 P W(国际单位)
    kW,MW(常用单位)
    机械效率 反映机械性能的物理量 有用功占总功的总值 η

  • 汽车的机械效率和功率:
        机械效率与功率是两个完全不同的概念。
        这两个物理量是从不同方面反映机械性能的,它们之间没有必然的联系。
        功率大表示机械做功快;机械效率高表示机械对总功的利用率高。功率大的机械不一定机械效率高。内燃机车功率可以达到几千千瓦,但效率只有30%r~ 40%,反之,机械效率高的机械功率不一定大。安装在儿童玩具汽车里的电动机效率可达80%,但功率却只有凡瓦特。

  • 考点名称:密度公式的应用

    • 密度公式的应用:
      (1)利用m=ρV求质量;利用V=m/ρ求体积

      (2)对于密度公式,还要从以下四个方面理解
      ①同种物质,在一定状态下密度是定值,它不随质量大小或体积大小的改变而改变。当其质量(或体积)增大几倍时,其体积(或质量)也随着增大几倍,而比值是不变的。因此,不能认为物质的密度与质量成正比,与体积成反比;
      ②具有同种物质的物体,在同一状态下,体积大的质量也大,物体的体积跟它的质量成正比;
      ③具有不同物质的物体,在体积相同的情况下,密度大的质量也大,物体的质量跟它的密度成正比

      ④具有不同物质的物体,在质量相同的条件下,密度大的体积反而小,物体的体积跟它的密度成反比

    • 密度公式的应用:
      1. 有关密度的图像问题
      此问题一般是给出质量一体积图像,判断或比较物质密度。解答时可在横坐标(或纵坐标)任选一数值,然后在纵坐标(或横坐标)上找到对应的数值,进行分析比较。
       例1如图所示,是甲、乙两种物质的m一V图像,由图像可知(   )
      A.ρ
      B.ρ
      C.ρ
      D.无法确定甲、乙密度的大小

      解析:要从图像直接看出甲、乙两种物质的密度大小目前还做不到,我们要先借助图像,根据公式ρ =总结规律后方可。
      如图所示,在横轴上任取一点V0,由V0作横轴的垂线V0B,分别交甲、乙两图线于A、B两点,再分别从A、B两点作纵轴垂线,分别交纵轴于m、m两点。则甲、乙两种物质的密度分别为,ρ= ,因为m<m,所以ρ甲<ρ乙,故C正确。

      2. 密度公式ρ =及变形、m=ρV的应用:
      密度的公式是ρ =,可得出质量计算式m=ρV 和体积计算式。只要知道其中两个物理量,就可以代入相应的计算式进行计算。审题时注意什么量是不变的,什么量是变化的。
      例2某瓶氧气的密度是5kg/m3,给人供氧用去了氧气质量的一半,则瓶内剩余氧气的密度是_____;容积是10L的瓶子装满了煤油,已知煤油的密度是 0.8×103kg/m3,则瓶内煤油的质量是_____,将煤油倒去4kg后,瓶内剩余煤油的密度是______。
       解析:氧气用去一半,剩余部分仍然充满整个氧气瓶,即质量减半体积不变,所以氧气的密度变为 2.5kg/m3。煤油倒去一半后,体积质量同时减半,密度不变。
      答案:2.5kg/m3;8kg;0.8×10kg/m3

      3. 比例法求解物质的密度
         利用数学的比例式来解决物理问题的方法称之为 “比例法”。能用比例法解答的物理问题具备的条件是:题目所描述的物理现象,由初始状态到终结状态的过程中至少有一个量保持不变,这个不变的量是由初始状态变成终结状态的桥梁,我们称之为“中介量”。
      例3甲、乙丽个物体的质量之比为3:2,体积之比为l:3,那么它们的密度之比为(   )
      A.1:2B.2:1C.2:9D.9:2
      解析:(1)写出所求物理量的表达式:
      (2)写出该物理量比的表达式:

      (3)化简:代入已知比值的求解:


      密度、质量、体积计算中的“隐含条件” 问题:
        很多物理问题中的有些条件需要仔细审题才能确定,这类条件称为隐含条件。因此寻找隐含条件是解决这类问题的关键。以密度知识为例,密度计算题形式多样,变化灵活,但其中有一些题具有这样的特点:即质量、体积、密度中的某个量在其他量发生变化时保持不变,抓住这一特点,就掌握了求解这类题的规律。

      1.隐含体积不变
      例1一个瓶子最多能装0.5kg的水,它最多能装_____kg的水银,最多能装_____m3的酒精。 ρ水银=13.6×103kg/m3,ρ水=1.0×103kg/m3,ρ酒精= 0.8×103kg/m3)
      解析:最多能装即装满瓶子,由最多装水量可求得瓶子的容积为V=5×10-4m3,则装水银为m
    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐