年前气候变化大会正在哥本哈根进行,中国环境保护部副部长李干杰在09年12月14日的一个报告会上指出,污染物减排将显著带动中国二氧化碳减排,如果“十一五”计划中二氧化硫减排-物理


例1如图所示,两圆柱形铁柱的底面半径之比是 3:1,高度相同,则它们对水平地面的压强之比为(   )

A.3:1B.1:3C.1:1D.9:l
解析:本题是分析圆柱体的压强,可直接利用公式进行分析。因为两圆柱体的密度相同、高度相同,所以压强相同,选项C正确。
答案:C

考点名称:密度的计算

  • 公式:
    密度的公式:ρ=m/V(ρ表示密度、m表示质量、V表示体积)

    密度公式变化:m=ρV、V=m/ρ

  • 正确理解密度公式:
    理解密度公式时,要注意条件和每个物理量所表示的特殊含义。从数学的角度看有三种情况(判断正误):

    1. 同种物质:

    (1)ρ一定时,m和V成正比;(因为ρ=m/V,ρ一定,m增大,V也增大,所以成正比)
    (2)m一定时,ρ与V成反比;(因为m=ρv,m一定,v增大,ρ变小,所以成反比)
    (3)V一定时,ρ与m成正比。
    结合物理意义,三种情况只有(1)的说法正确,(2)(3)都是错误的
    因为同种物质的密度是一定的,它不随体积和质量的变化而变化,所以在理解物理公式时,不可能脱离物理事实,不能单纯地从数学的角度理解物理公式中各量的关系。

    2. 不同物质:

    (1)具有不同物质的物体,在体积相同的情况下,密度大的质量也大,物体的质量跟它的密度成正比
    (2)具有不同物质的物体,在质量相同的条件下,密度大的体积反而小,物体的体积跟它的密度成反比

考点名称:密度公式的应用

  • 密度公式的应用:
    (1)利用m=ρV求质量;利用V=m/ρ求体积

    (2)对于密度公式,还要从以下四个方面理解
    ①同种物质,在一定状态下密度是定值,它不随质量大小或体积大小的改变而改变。当其质量(或体积)增大几倍时,其体积(或质量)也随着增大几倍,而比值是不变的。因此,不能认为物质的密度与质量成正比,与体积成反比;
    ②具有同种物质的物体,在同一状态下,体积大的质量也大,物体的体积跟它的质量成正比;
    ③具有不同物质的物体,在体积相同的情况下,密度大的质量也大,物体的质量跟它的密度成正比

    ④具有不同物质的物体,在质量相同的条件下,密度大的体积反而小,物体的体积跟它的密度成反比

  • 密度公式的应用:
    1. 有关密度的图像问题
    此问题一般是给出质量一体积图像,判断或比较物质密度。解答时可在横坐标(或纵坐标)任选一数值,然后在纵坐标(或横坐标)上找到对应的数值,进行分析比较。
     例1如图所示,是甲、乙两种物质的m一V图像,由图像可知(   )
    A.ρ
    B.ρ
    C.ρ
    D.无法确定甲、乙密度的大小

    解析:要从图像直接看出甲、乙两种物质的密度大小目前还做不到,我们要先借助图像,根据公式ρ =总结规律后方可。
    如图所示,在横轴上任取一点V0,由V0作横轴的垂线V0B,分别交甲、乙两图线于A、B两点,再分别从A、B两点作纵轴垂线,分别交纵轴于m、m两点。则甲、乙两种物质的密度分别为,ρ= ,因为m<m,所以ρ甲<ρ乙,故C正确。

    2. 密度公式ρ =及变形、m=ρV的应用:
    密度的公式是ρ =,可得出质量计算式m=ρV 和体积计算式。只要知道其中两个物理量,就可以代入相应的计算式进行计算。审题时注意什么量是不变的,什么量是变化的。
    例2某瓶氧气的密度是5kg/m3,给人供氧用去了氧气质量的一半,则瓶内剩余氧气的密度是_____;容积是10L的瓶子装满了煤油,已知煤油的密度是 0.8×103kg/m3,则瓶内煤油的质量是_____,将煤油倒去4kg后,瓶内剩余煤油的密度是______。
     解析:氧气用去一半,剩余部分仍然充满整个氧气瓶,即质量减半体积不变,所以氧气的密度变为 2.5kg/m3。煤油倒去一半后,体积质量同时减半,密度不变。
    答案:2.5kg/m3;8kg;0.8×10kg/m3

    3. 比例法求解物质的密度
       利用数学的比例式来解决物理问题的方法称之为 “比例法”。能用比例法解答的物理问题具备的条件是:题目所描述的物理现象,由初始状态到终结状态的过程中至少有一个量保持不变,这个不变的量是由初始状态变成终结状态的桥梁,我们称之为“中介量”。
    例3甲、乙丽个物体的质量之比为3:2,体积之比为l:3,那么它们的密度之比为(   )
    A.1:2B.2:1C.2:9D.9:2
    解析:(1)写出所求物理量的表达式:
    (2)写出该物理量比的表达式:

    (3)化简:代入已知比值的求解:


    密度、质量、体积计算中的“隐含条件” 问题:
      很多物理问题中的有些条件需要仔细审题才能确定,这类条件称为隐含条件。因此寻找隐含条件是解决这类问题的关键。以密度知识为例,密度计算题形式多样,变化灵活,但其中有一些题具有这样的特点:即质量、体积、密度中的某个量在其他量发生变化时保持不变,抓住这一特点,就掌握了求解这类题的规律。

    1.隐含体积不变
    例1一个瓶子最多能装0.5kg的水,它最多能装_____kg的水银,最多能装_____m
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐