某港口起吊体积为0.2m3质量为500kg的密封货箱时不慎落入江中,打捞到货箱后,吊机用绳子将货箱从江底匀速向上提升,求:(g取10N/kg)(1)货箱未露出水面时,受到水的浮力是多大-物理
(3)V排是表示被物体排开的液体的体积,当物体全部浸没在液体里时,V排=V物;当物体只有一部分浸入液体里时,则V排<V物。
(4)由可以看出,浮力的大小只跟液体的密度和物体排开液体的体积这两个因素有关,而跟物体本身的体积、密度、形状、在液体中的深度、液体的多少等因素无关。
(5)阿基米德原理也适用于气体,但公式中ρ液应该为ρ气。
控制变量法探究影响浮力大小的因素:
探究浮力的大小跟哪些因素有关时,用“控制变量法”的思想去分析和设计,具体采用“称量法”来进行探究,既能从弹簧测力计示数的变化中体验浮力,同时,还能准确地测出浮力的大小。
例1小明在生活中发现木块总浮在水面,铁块却沉入水底,因此他提出两个问题:
问题1:浸入水中的铁块是否受到浮力?
问题2:浮力大小与哪些因素有关?
为此他做了进一步的猜想,设计并完成了如图所示实验,
(1)(b)、(c)图中弹簧测力计示数均小于(a)图中弹簧测力计示数,说明浸入水中的铁块__(选填 “受到”或“不受到”)浮力;
(2)做___(选填字母)两次实验,是为了探究铁块浸没在水中时所受浮力大小与深度是否有关;
(3)做(d)、(e)两次实验,是为了探究浮力大小与 __的关系。
解析(1)物体在水中时受到水向上托的力,因此示数会变小。
(2)研究浮力与深度的关系时,应保持V排和ρ液不变,改变深度。
(3)在V排不变时,改变ρ液,发现浮力大小改变,说明浮力大小与ρ液有关。
答案(1)受到(2)(c)、(d)(3)液体密度
公式法求浮力:
公式法也称原理法,根据阿基米德原理,浸入液体中的物体受到向上的浮力,浮力的大小等于物体排开的液体受到的重力(表达式为:F浮=G排=ρ液gV排)。此方法适用于所有浮力的计算。
例1一个重6N的实心物体,用手拿着使它刚好浸没在水中,此时物体排开的水重是10N,则该物体受到的浮力大小为____N。
解析由阿基米德原理可知,F浮=G排=10N。
答案10
实验法探究阿基米德原理:
探究阿基米德原理的实验,就是探究“浮力大小等于什么”的实验,结论是浮力的大小等于物体排开液体所受的重力。实验时,用重力差法求出物体所受浮力大小,用弹簧测力计测出排开液体重力的大小,最后把浮力与排开液体的重力相比较。实验过程中注意溢水杯中的液体达到溢口,以保证物体排开的液体全部流入小桶。
例1在探究“浮力大小等于什么”的实验中,小明同学的一次操作过程如图所示。
(1)测出铁块所受到的重力G铁;
(2)将水倒入溢水杯中;
(3)把铁块浸入溢水杯中,读出弹簧测力计示数F;
(4)测出小桶和被排开水的总重力G;
(5)记录分析数据,归纳总结实验结论,整理器材。
分析评估小明的实验,指出存在的问题并改正。
解析:在探究“浮力大小等于什么”的实验中,探究的结论是浮力的大小等于物体排开的液体所受到的重力,所以实验时,需要用弹簧测力计测出铁块受到的浮力和它排开水的重力进行比较得出结论,因此实验过程中需要测空小桶的重力G桶,并且将溢水杯中的水加至溢水口处。
答案:存在的问题:
(1)没有测空小桶的重力 (2)溢水杯的水量不足
改正:(1)测空小桶的重力G桶(2)将溢水杯中的水加至溢水口处
例曹冲利用浮力知识,巧妙地测出了大象的体重。请你写出他运用的与浮力有关的知识_____、 ____,另外,他所用到的科学研究方法是:_____和______.
解析:曹冲称象的过程是首先把大象放在船上,在水面处的船舷上刻一条线,然后把大象牵上岸。再往船上放入石块,直到船下沉到船舷上的线再次与水面相平时为止,称出此时船上石头的质量即为大象的质量。两次船舷上的线与水面相平,根据阿基米德原理可知,为了让两次船排开水的体积相同,进而让两次的浮力相同,再根据浮沉条件,漂浮时重力等于浮力可知:船重+大象重=船重+石头重,用多块石头的质量替代了不可拆分的大象的质量,这是等效替代法在浮力中的一个典型应用。
答案:浮沉条件 阿基米德原理 等效替代法化整为零法
考点名称:功的计算
- 功的计算公式:
功(W)等于力(F)跟物体在力的方向上通过的距离(s)的乘积。(功=力×距离),W=FS。
单位:
国际单位制中,力的单位是N,距离的单位是m,功的单位是N·m,它有一个专用名称叫做焦耳,简称焦,用符号J表示,1J=1N·m。 - 在利用该公式进行计算时的注意点:
(1)力与物体移动的距离在方向上必须一致;
(2)力与物体移动的距离必须对应于同一物体;
(3)力与物体移动的距离必须对应于同一段时间。
考点名称:力的合成与应用
- 定义:
几个力共同作用在一个物体上时,它们的作用效果可以用一个力来代替,这个力就称为那几个力的合力。如果已知几个力的大小和方向,求合力的大小和方向,称为力的合成。
说明:
合力是为了表示几个力的作用效果而引入的,它并不是存存于物体受到的几个力之外的力,而是为了简化物体受到的各个力的一种方法,因此力的合成称为等效替代法。 - 同一直线上二力的合成:
1.同一直线上同方向二力的合力,大小等于二力大小之和,方向与这两个力方向相同。记作:F=F1+F2。如图所示,既有人在车前拉,又有人在车后推,车同时受到拉力F1和推力F2的作用,并且这两个力方向相同则拉力和推力的合力大小F=F1+F2.
2.同一直线上相反方向的二力的合力,大小等于二力大小之差的绝对值,方向和较大的力的方向相同。记作:F=|F1一F2|。
不同直线上的两个力合成:
两个力合成时,以表示这两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,这就叫做平行四边形定则。
力的平行四边形定则以此得证:
(1)两分力大小不变时,夹角越大,合力越小
(2)合力大小的变化范围F1+F2≥F≥|F1-F2|
(3)力的合成的平行四边形定则,只适用于共点力(结论)
考点名称:重力的计算
- 重力的计算公式:
物体所受的重力跟它的质量成正比,g=,G=mg。(g=9.8N/g) - 重力与质量的区别和联系: