底面积为1×10-2米2的轻质柱形容器中盛有0.1米深的水,放在水平桌面中央。将体积为2×10-4米3、质量为1千克的球形物体浸没在水中后,物体沉入容器底部,水未溢出。求:①未放入-三年级物理

题文

底面积为1×10-22的轻质柱形容器中盛有0.1米深的水,放在水平桌面中央。将体积为2×10-43、质量为1千克的球形物体浸没在水中后,物体沉入容器底部,水未溢出。求:
① 未放入物体时水对容器底部的压强p
② 放入物体后容器对桌面的压力F容器
③ 放入物体后水对容器底部压强的增加量△p。

题型:计算题  难度:中档

答案

pρgh                                                                     1分
=1×103千克/米3×9.8牛/千克×0.1米
980帕                                                                1分
mρV=1×103千克/米3×1×10-22×0.1米
=1千克                                           1分
F容器GG=(mmg                         1分
=(1千克+1千克)×9.8牛/千克
=19.6牛                                                              1分
③△pρghρgV/S                                              1分                         
=1×103千克/米3×9.8牛/千克×2×10-43/1×10-22 
=196帕   

据专家权威分析,试题“底面积为1×10-2米2的轻质柱形容器中盛有0.1米深的水,放在水平桌..”主要考查你对  浮力及阿基米德原理  等考点的理解。关于这些考点的“档案”如下:

浮力及阿基米德原理

考点名称:浮力及阿基米德原理

  • 浮力:
    (1)定义:浸在液体中的物体受到向上托的力叫做浮力。
    (2)施力物体与受力物体:浮力的施力物体是液体 (或气体),受力物体是浸入液体(或气体)中的物体。
    (3)方向:浮力的方向总是竖直向上的。
    阿基米德原理:
    (1)原理内容:浸在液体里的物体受到液体竖直向上的浮力,浮力的大小等于它排开的液体受到的重力。
    (2)公式:,式中ρ表示液体的密度,V是被物体排开的液体的体积,g取9.8N/kg。

  • 浮力大小跟哪些因素:
    有关浸在液体中的物体受到浮力的大小,跟物体浸入液体中的体积有关,跟液体的密度有关,跟物体浸入液体中的深度无关。跟物体本身密度大小无关。

  • 阿基米德原理的五点透析:
    (1)原理中所说的“浸在液体里的物体”包含两种状态:一是物体的全部体积都浸入液体里,即物体浸没在液体里;二是物体的一部分体积浸入液体里,另一部分露在液面以上。

    (2)G指被物体排开的液体所受的重力,F= G表示物体受到的浮力的大小等于被物体排开的液体的重力。

    (3)V是表示被物体排开的液体的体积,当物体全部浸没在液体里时,V=V;当物体只有一部分浸入液体里时,则V<V

    (4)由可以看出,浮力的大小只跟液体的密度和物体排开液体的体积这两个因素有关,而跟物体本身的体积、密度、形状、在液体中的深度、液体的多少等因素无关。

    (5)阿基米德原理也适用于气体,但公式中ρ应该为ρ

    控制变量法探究影响浮力大小的因素:
         探究浮力的大小跟哪些因素有关时,用“控制变量法”的思想去分析和设计,具体采用“称量法”来进行探究,既能从弹簧测力计示数的变化中体验浮力,同时,还能准确地测出浮力的大小。
    例1小明在生活中发现木块总浮在水面,铁块却沉入水底,因此他提出两个问题:
    问题1:浸入水中的铁块是否受到浮力?
    问题2:浮力大小与哪些因素有关?
    为此他做了进一步的猜想,设计并完成了如图所示实验,
    (1)(b)、(c)图中弹簧测力计示数均小于(a)图中弹簧测力计示数,说明浸入水中的铁块__(选填 “受到”或“不受到”)浮力;
    (2)做___(选填字母)两次实验,是为了探究铁块浸没在水中时所受浮力大小与深度是否有关;
    (3)做(d)、(e)两次实验,是为了探究浮力大小与 __的关系。

    解析(1)物体在水中时受到水向上托的力,因此示数会变小。
    (2)研究浮力与深度的关系时,应保持V和ρ不变,改变深度。
    (3)在V不变时,改变ρ,发现浮力大小改变,说明浮力大小与ρ有关。
    答案(1)受到(2)(c)、(d)(3)液体密度

    公式法求浮力: