物理上常把电流的形成与水流的形成进行类比。阅读以下材料,完

首页 > 考试 > 物理 > 初中物理 > 电流的大小/2008-12-12 / 加入收藏 / 阅读 [打印]

B.ρ
C.ρ
D.无法确定甲、乙密度的大小

解析:要从图像直接看出甲、乙两种物质的密度大小目前还做不到,我们要先借助图像,根据公式ρ =总结规律后方可。
如图所示,在横轴上任取一点V0,由V0作横轴的垂线V0B,分别交甲、乙两图线于A、B两点,再分别从A、B两点作纵轴垂线,分别交纵轴于m、m两点。则甲、乙两种物质的密度分别为,ρ= ,因为m<m,所以ρ甲<ρ乙,故C正确。

2. 密度公式ρ =及变形、m=ρV的应用:
密度的公式是ρ =,可得出质量计算式m=ρV 和体积计算式。只要知道其中两个物理量,就可以代入相应的计算式进行计算。审题时注意什么量是不变的,什么量是变化的。
例2某瓶氧气的密度是5kg/m3,给人供氧用去了氧气质量的一半,则瓶内剩余氧气的密度是_____;容积是10L的瓶子装满了煤油,已知煤油的密度是 0.8×103kg/m3,则瓶内煤油的质量是_____,将煤油倒去4kg后,瓶内剩余煤油的密度是______。
 解析:氧气用去一半,剩余部分仍然充满整个氧气瓶,即质量减半体积不变,所以氧气的密度变为 2.5kg/m3。煤油倒去一半后,体积质量同时减半,密度不变。
答案:2.5kg/m3;8kg;0.8×10kg/m3

3. 比例法求解物质的密度
   利用数学的比例式来解决物理问题的方法称之为 “比例法”。能用比例法解答的物理问题具备的条件是:题目所描述的物理现象,由初始状态到终结状态的过程中至少有一个量保持不变,这个不变的量是由初始状态变成终结状态的桥梁,我们称之为“中介量”。
例3甲、乙丽个物体的质量之比为3:2,体积之比为l:3,那么它们的密度之比为(   )
A.1:2B.2:1C.2:9D.9:2
解析:(1)写出所求物理量的表达式:
(2)写出该物理量比的表达式:

(3)化简:代入已知比值的求解:


密度、质量、体积计算中的“隐含条件” 问题:
  很多物理问题中的有些条件需要仔细审题才能确定,这类条件称为隐含条件。因此寻找隐含条件是解决这类问题的关键。以密度知识为例,密度计算题形式多样,变化灵活,但其中有一些题具有这样的特点:即质量、体积、密度中的某个量在其他量发生变化时保持不变,抓住这一特点,就掌握了求解这类题的规律。

1.隐含体积不变
例1一个瓶子最多能装0.5kg的水,它最多能装_____kg的水银,最多能装_____m3的酒精。 ρ水银=13.6×103kg/m3,ρ水=1.0×103kg/m3,ρ酒精= 0.8×103kg/m3)
解析:最多能装即装满瓶子,由最多装水量可求得瓶子的容积为V=5×10-4m3,则装水银为m水银=13.6×103kg/m3×5×10-4m3=6.8kg。装酒精的体积为瓶子的容积。
答案6.8;5×10-4

2. 隐含密度不变
例2一块石碑的体积为V=30m3,为测石碑的质量,先取了一块刻制石碑时剔下来的小石块作为样品,其质量是m=140g,将它放入V1=100cm3的水中后水面升高,总体积增大到V2=150cm3,求这块石碑的质量m
解析:此题中隐含的条件是石碑和样品是同种物质,密度相同,而不同的是它们的体积和质量。依题意可知,样品体积为:
V=V2-V1=150cm3一100cm3=50cm3 =5.0×10-5m3
=84t
答案:84t

3. 隐含质量不变
例3质量为450g的水结成冰后,其体积变化了 ____m3。(ρ水=0.9×103kg/m3)
解析:水结成冰后,密度减小,450g水的体积为,水结成冰后,质量不变,因此冰的体积为=500cm3=5.0×10-4m3=5.0× 10-4m3一4.5×10-4m3=5×10-5m3

合金物体密度的相关计算:
     首先要抓住合金体的总质量与总体积分别等于各种物质的质量之和与体积之和这一特征,然后根据具体问题,灵活求解。
例两种不同的金属,密度分别为ρ1、ρ2:
(1)若墩质量相等的金属混合后制成合金,则合金的密度为____。
(2)若取体积相等的金属混合后制成合金,则合金的密度为_____。
解析:这道题的关键是抓住“两总”不变,即总质量和总体积不变。在(1)中,两种金属的质量相等,设为m1=m2=m,合金的质量m=2m,则密度为ρ1的金属的体积V1=,密度为ρ2的金属的体积V2=,合金的体积,则合金的密度
在(2)中两种金属的体积相等,设为,合金的体积
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐