图示为一款有高、低温两档的蒸汽电熨斗电路原理图.R1、R2为电


⑤在并联电路中,导体两端的电压相等,通电时间也相等,根据,可知电流通过导体产生的热量跟导体的电阻成反比,即
⑥电热器:利用电流的热效应来加热的设备,电炉、电烙铁、电熨斗、电饭锅、电烤炉等都是常见电热器。电热器的主要组成部分是发热体,发热体是由电阻率大,熔点高的电阻丝绕在绝缘材料上制成。
焦耳定律是定量说明传导电流将电能转换为热能的定律。

电流的化学效应:
电流通过导电的液体会使液体发生化学变化,产生新的物质。电流的这种效果叫做电流的化学效应。电的化学效应主要是电流中的带电粒子(电子或离子)参与而使得物质发生了化学变化。化学变化中往往是这个物质得到了电子,那个物质失去了电子而产生了的变化。最典型的就是氧化还原反应。而电流的作用使得某些原来需要更加苛刻的条件才发生的反应发生了,并使某些反应过程可逆了(比如说电镀、电极化)。

电流化学效应有哪些?:
电解,电镀,电离等就属于电流的化学效应的例子。
碘化钾溶液在通电后发生化学变化,碘能使淀粉变成蓝色。
当电流通过电解质时,在两极会发生化学反应,这就是所谓电流的化学效应
水的组成与分解
组成:
氢气燃烧可产生水
氢与氧组成水
分解:
接於电池两极的金属导线於水中生气泡
水被电流分解为氢与氧
电解
利用电能,以引起分解的化学反应
装置:
原理:正离子移向负极得电子而析出
负离子移向正极失电子而成中性原子析出
水的电解
注意事项:
针头与铜线以绝缘胶带缠紧是防气泡从铜线冒出
纯水极难电解故加入氢氧化钠帮助导电. 

考点名称:焦耳定律及计算公式

焦耳的定律及公式:
焦耳定律或焦耳-冷次定律是定量说明传导电流将电能转换为热能的定律。1841年,英国物理学家詹姆斯·焦耳发现载流导体中产生的热量Q(称为焦耳热)与电流I的平方、导体的电阻R和通电时间t成比例。而在1842年时,俄国物理学家海因里希·楞次也独立发现上述的关系,因此也称为“焦耳-冷次定律”。
采用国际单位制时,焦耳定律的表达式为:
Q = I2Rt 或 P = I2R
其中Q(热量)、I(电流)、R(电阻)、t(时间)、P(热功率)各量的单位依次为焦耳、安培、欧姆、秒和瓦特。
焦耳定律是设计电照明,电热设备及计算各种电气设备温升的重要公式。

与欧姆定律的关系:
根据欧姆定律:
U=IR
焦耳定律的公式亦可表示为:

关于焦耳定律的历史:
关于导体中通过的电流与所产生的热量之间的定律。1840年由詹姆斯·普雷斯科特·焦耳提出。定律揭示了电流通过导线时所产生的热量和导线的电阻与电流平方的乘积成比例,即
H=0.24IRt
式中H 为产生的总热量,单位为卡;I 为电流,单位为安;R 为电阻,单位为欧;t为时间,单位为秒;0.24为由实验定出的比例常量。
焦耳是通过实验测定发现这个定律的。但是从理论上也不难理解,当电流的大小不变,产生的热量全部来源于电荷通过导体失去的势能。电荷的数量为It,失去的势能为W,W=RIt。因此,在单位时间中转变为热的电能为RI(焦),或者说在导体上消耗的电功率P为
P=RI(瓦)
焦耳定律是设计电照明,电热设备及计算各种电气设备温升的重要公式。
焦耳定律在串联电路中的运用:
在串联电路中,电流是相等的,则电阻越大时,产生的热越多。
焦耳定律在并联电路中的运用:
在并联电路中,电压是相等的,通过变形公式,W=Q=Pt=(U^2/R)×t,当U定时,R越大则Q越小。
需要注明的是,焦耳定律与电功公式W=UIt适任何元件及发热的计算,即只有在像电热器这样的电路(纯电阻电路)中才可用Q=W=UItq=I^2×Rt =(U^2/R)×t。
另外,焦耳定律还可变形为Q=IRq(后面的Q是电荷量,单位库仑(c))。
在热力学中指,气体的内能只是温度的函数,与体积无关。即内能对体积的偏导数为零。