下列实例与所利用的物质物理属性不相符的是( )A.夏天在室内洒水

摩擦起电的条件:一是相互摩擦的物体由不同种类的物质构成;二是这两个物体要与外界绝缘。

人体为什么会产生静电?

静电是由原子外层的电子受到各种外力的影响发生转移,分别形成正负离子造成的。任何两种不同材质的物体接触后都会发生电荷的转移和积累,形成静电。人身上的静电主要是由衣物之间或衣物与身体的摩擦造成的,因此穿着不同材质的衣物时“带电”多少是不同的,比如穿化学纤维制成的衣物就比较容易产生静电,而棉制衣物产生的就较少。所以说,不同的衣料也可能决定带电的种类。

摩擦起电的原因:

(1)由于不同物质的原子核对核外电子的束缚能力不同,当两个物体相互摩擦时,哪个物体的原子核对核外电子的束缚本领弱,它的一些电子就会转移到另一个物体上,失去电子的物体带正电,得到电子的物体由于带有多余的电子而带负电。

(2)摩擦起电实质上并不是创造了电,只是电荷从一个物体转移到了另一个物体,使正负电荷分开,电荷的总量并没有改变。相互摩擦的两个物体,必然带上等量的异种电荷,带正电的物体缺少电子,带负电的物体有了等量的多余的电子。

补充:同种物质摩擦不起电,原因是同种物质的原子核束缚电子的本领相同,摩擦时不会发生电子的转移。

考点名称:导体,绝缘体

导体与绝缘体的概念

导体:容易导电的物体叫做导体,例如:石墨、人体、大地以及酸、碱、盐的水溶液;

绝缘体:不容易导电的物体叫做绝缘体,例如:橡胶、玻璃、塑料等;

两者关系:导体和绝缘体在一定条件下可以相互转化。

导体容易导电,绝缘体不容易导电的原因:

(1)导体容易导电是冈为导体中有大量的自由电荷,它们受原子核的束缚力很小,能够从导体的一个部分移到另一个部分;

(2)绝缘体中,电荷几乎都束缚在原子的范围之内,不能从绝缘体的一个部分移到另一个部分。

导体的分类

1、半导体:

半导体材料的导电能力介于导体和非导体之间,比导体差、比非导体强,具有一些特殊的物理性质,温度、光照、杂质等因素都对它的性能有很大影响。常见的半导体材料有硅、锗和砷化镓等。用半导体材料可以制造半导体二极管、二三极管和集成电路等多种半导体元件。

半导体的特点:

(1)半导体二极管具有单向导电性,即只允许电流由一个方向通过元件。

(2)半导体三极管可以用来放大电信号。

2、超导体:

(1)超导现象:某些物质在很低的温度下,电阻就变成了零,这就是超导现象。

(2)应用:

(1)利用超导体的零电阻特性可实现远距离大功率输电。超导输电线可以无损耗地输送较大的电流,这意味着用细电线就可以输送大电流。

(2)超导磁悬浮现象,使人们可以用超导体来实现交通工具的“无摩擦”运行。

导体和绝缘体的比较:

导体和绝缘体的比较

考点名称:与密度有关的物理现象

与密度有关的物理现象
1、密度知识的应用: 应用 适用范围 方法 求物体的质量 不便于直接称量质量的物体 (1)查出该物质的密度ρ,测出体积V (2)根据ρ=m/v的变形公式m=ρV,求出质量 求物体的体积 形状不规则或不便于直接测量体积的物体 (1)查出物质的密度ρ,用天平测出其质量 (2)根据ρ=m/V的变形公式V=m/ρ求出体积 求物质的密度 鉴别物质 (1)根据ρ=m/v算出物质的密度 (2)对照密度表,鉴别出什么物质

2、密度的应用: 密度的应用主要有四个方面:①选择材料;②鉴别物质;③由体积求质量;④由质量求体积。

3、密度的特殊用途: 密度的特殊用途密度的特殊用途是根据需要选取不同密度的物质作产品的原材料。铅可用作网坠,铸铁用作落地扇的底座、塔式起重机的压铁等,都是冈为它们的密度比较大。铝合金用来制造飞机,玻璃钢用来制造汽车的外壳,泡沫塑料用来制作救生器件,氢气、氦气是气球的专用充气材料等,都因为它们的密度比较小。

4、怎样判断物体是否空心:判断物体是实心还是空心,解决问题的方法很多,实质上都是根据密度的定义式,比较实际物体与实心物体的质量、体积或密度之间是否存在差异,即:比较质量法、比较体积法或比较密度法。
如果存在差异,则实际物体为空心物体。
(1)如果物体是实心的,则该物体的密度应该和组成物体的物质密度相同。因此只要用“比较密度法”比较,即可确定该物体的空实性。
(2)假设物体是实心的,可以由V=m/ρ求得等质量实心物体的体积是多少,再跟该物体的真实体积相比较,即可确定物体的空实性,这种方法称为“比较体积法”。
(3)假设物体是实心的,可以由m=ρV求得等体积的实心物体的质量是多少,再跟该物体的真实质量相比较,即可确定物体的空实性,这种方法称为“比较质量法”。

密度的应用:
密度的应用主要有四个方面:①选择材料;②鉴别物质;③由体积求质量;④由质量求体积。

考点名称:稳度和提高稳度的方法

稳度的定义:
是指物体处于稳定平衡状态的稳定程度,稳度的大小由物体重心的高度和支持面的大小决定.重心低,支持面大的物体稳度大,反之则稳度小.所谓支持面是指物体各部分所围成的面积.如站在行驶车厢里的人,为了增大稳度,往往把两腿叉开,这样两脚所围成的面积就增加了,支持面增加了(同时重心也降低了),稳度增大了.又如一块砖平放和竖放相比较,平放时重心低,支持面积大,所以稳度就大.增大物体的稳度有重要的实际意义,为了增大物体的稳度,既可以增大底面积,也可以降低重心的高度,还可以同时增大底面积和降低重心高度.精密的天平一定安置在一个底面积较大,又较重的底座上;高压线的铁塔都有一个很大的支持面;越野汽车和山区的拖拉机轮间宽度都较大,都是为了增大物体的稳度

决定稳度的因素:
稳度与重心的高度及底面积的大小有关,重心越低,底面积越大,稳度越大。

物体倾倒的条件:
物体所受重力的作用点在重心,只要中垂线(重力作用线)不超出物体的支持面,物体就不会倾倒。

提高稳度的方法有哪些:
要使物体更稳定些,一是要增大物体的支持面,比如一个啤酒瓶子,你如果把它倒过来,瓶口朝下放在桌面上,很明显会比瓶底朝下更不稳定,这就是物体支持面大小影响到了物体的稳度;
二是要降低物体的重心,比如你拿一根竹竿,把竹竿竖起来,如果这根竹竿很长,就会感觉比较容易倒下,这就是因为长的竹竿重心更高,稳度也就降低了.

提高稳度的方法主要有两种:

一是增大支面;二是降低重心
1.增大支面
如图展示了几个提高稳度的例子。


2.降低重心
用降低重心来提高稳度的例子也是很多的。各种车辆都把底盘做得很重,重心降得很低;赛车选手几乎是平躺在轮子之间;在用卡车装货时,要注意把重的货物装在下面,轻的装在上面,而且货物不能装得过高。如果能把重心降到支点以下,还可以制作出一些有趣的小玩意。如下图: