一步行者以8m/s之速度在一直线道路上追赶一辆同向行驶而被红灯所阻之静止公车,当他距公车30米时,交通灯改变,公车以2m/s2加速度驶去,则人车之最短距离为______米.

◎ 题目

一步行者以8m/s之速度在一直线道路上追赶一辆同向行驶而被红灯所阻之静止公车,当他距公车30米时,交通灯改变,公车以2m/s2加速度驶去,则人车之最短距离为______米.

◎ 答案

步行者做匀速运动,汽车从静止开始做匀加速运动,开始时,步行者速度大于汽车的速度,两者距离减小;当汽车的速度大于步行者速度时,两者距离增大.故当两者速度相等时,距离最短,设速度相等时所用时间为t,则有
   v=at,得t=
v
a
=
8
2
s=4s
则人车之最短距离为Smin=(
1
2
at2
+30)-vt=(
1
2
×2×42
+30)-8×4=14(m)
故答案为:14.

◎ 解析

“略”

◎ 知识点

    专家分析,试题“一步行者以8m/s之速度在一直线道路上追赶一辆同向行驶而被红灯所阻之静止公车,当他距公车30米时,交通灯改变,公车以2m/s2加速度驶去,则人车之最短距离为______米.…”主要考查了你对  【匀变速直线运动的位移与时间的关系】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐