如图所示,光滑水平地面上停着一辆平板车,其质量为2m,长为L,车右端(A点)有一块静止的质量为m的小金属块.金属块与车间有摩擦,以中点C为界,AC段与CB段动摩擦因数不同.现给

◎ 题目

如图所示,光滑水平地面上停着一辆平板车,其质量为2m,长为L,车右端(A点)有一块静止的质量为m的小金属块.金属块与车间有摩擦,以中点C为界,AC段与CB段动摩擦因数不同.现给车施加一个向右的水平恒力,使车向右运动,同时金属块在车上开始滑动,当金属块滑到中点C时,即撤去这个力.已知撤去力的瞬间,金属块的速度为v0,车的速度为2v0,最后金属块恰停在车的左端(B点).
求:(1)F的大小为多少?
(2)AC段与CB段动摩擦因数μ1与μ2的比值.
魔方格

◎ 答案

(1)设水平拉力为F,力的作用时间为t1
对金属块,由牛顿第二定律可得:a1=
μ1mg
m
1g,
由匀变速直线运动的速度公式可知,v0=a1t1,则t1=
v0
μ1g

对小车,由牛顿第二定律可得:a2=
(F-μ1mg)
2m

由匀变速直线运动的速度公式可知:
2v0=a2t1=
(F-μ1mg)
2m
×
v0
μ1g
,则F=5μ1mg  ①;
在A→C过程中,由动能定理得:
对金属块:μ1mgs1=
1
2
mv02 ②,
对小车:(F-μ1mg)s2=
1
2
2m(2v02 ③,
由几何关系可知:s2-s1=
L
2
    ④,
由①②③④解得:μ1=
v20
gL
,F=
5m
v20
L

(2)从小金属块滑至车中点C开始到小金属块停在车的左端的过程中,
系统外力为零,动量守恒,设共同速度为v,由2m×2v0+mv0=(2m+m)v,得v=
5
3
v0
由能量守恒得:μ2mg
L
2
=
1
2
mv02+
1
2
×2m×(2v02 -
1
2
×3m×(
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
某质点的位移随时间的变化关系式x=4t-2t2,x与t的单位分别是m和s。则该质点的初速度和加速度分别是[]A.4m/s和-2m/s2B.0和2m/s2C.4m/s和-4m/s2D.4m/s和0
某质点的位移随时间的变化关
一物体做匀加速直线运动,初速度为1m/s,加速度为1m/s2。求:物体在第5s内的位移是多少?
一物体做匀加速直线运动,初
在平直公路上,自行车与同方向行驶的一辆汽车在t=0时同时经过某一个路标,它们的位移xm随时间ts变化的规律为:汽车为,自行车为,则下列说法正确的是[]A.汽车作减速直线运动,
在平直公路上,自行车与同方
一初速度为6m/s做直线运动的质点,受到力F的作用产生一个与初速度方向相反、大小为2m/s2的加速度,当它的位移大小为3m时,所经历的时间可能为[]A.B.C.sD.s
一初速度为6m/s做直线运动的
如图所示,有一块木板静止在光滑而且足够长的水平面上,木板的质量为M=4kg,长为L=1.4m,木板右端放着一个小滑块,小滑块质量m=1kg,其尺寸远小于L,小滑块与木板间的动摩擦
如图所示,有一块木板静止在