如图所示,在同一竖直平面内,一轻质弹簧一端固定,静止斜靠在光滑斜面上,另一自由端恰好与水平线AB齐平,一长为L的轻质细线一端固定在O点,另一端系一质量为m的小球,将细
◎ 题目
如图所示,在同一竖直平面内,一轻质弹簧一端固定,静止斜靠在光滑斜面上,另一自由端恰好与水平线AB齐平,一长为L的轻质细线一端固定在O点,另一端系一质量为m的小球,将细线拉至水平,此时小球在位置C,由静止释放小球,小球到达最低点D时,细绳刚好被拉断,D点到AB的距离为h,之后小球在运动过程中恰好沿斜面方向将弹簧压缩,弹簧的最大压缩量为x,求: (1)细绳所能承受的最大拉力; (2)斜面的倾角θ; (3)弹簧所获得的最大弹性势能. |
◎ 答案
(1)C到D过程,小球的机械能守恒,则有 mgL=
D点:T-mg=m
联立解得,T=3mg,vD=
(2)细绳在D点被拉断后小球做平抛运动,则 小球到达D时竖直方向的分速度为 vy=
故tanθ=
(3)当弹簧的压缩量最大时弹簧所获得的最大弹性势能,根据系统的机械能守恒得 △E弹=mg(L+h+xsinθ)=mg(L+h+x |