如图,某带电粒子由静止经C、D间电压U=1×103V加速后,沿两水平金属板M、N中心线OO′射入.已知两金属板长L=0.2m,板间有一沿竖直方向的匀强电场(板外无电场),场强E=1×104V/m

首页 > 考试 > 物理 > 高中物理 > 向心力/2022-09-29 / 加入收藏 / 阅读 [打印]

◎ 题目

如图,某带电粒子由静止经C、D间电压U=1×103V加速后,沿两水平金属板M、N中心线OO′射入.已知两金属板长L=0.2m,板间有一沿竖直方向的匀强电场(板外无电场),场强E=1×104V/m.在板右端有一垂直纸面的匀强磁场,磁感应强度B=0.3T,P、Q是磁场的左右两个竖直理想边界,粒子在磁场中运动的最长时间为t=1.5×10-4S.(粒子重力不计,π≈3)求:
(1)粒子离开偏转电场时速度方向与水平方向的夹角;
(2)粒子的比荷;
(3)磁场的最小宽度d.
魔方格

◎ 答案

设带电粒子的质量为m,电量为q,离开偏转电场时的速度为v0
(1)根据动能定理 Uq=
1
2
mv02
    
粒子在偏转电场中加速度 a=
Eq
m

偏转电场中运动时间 t=
L
v0
 
竖直方向速度 vy=at
设粒子离开偏转电场时速度方向与水平方向的角度为θ,则 
由以上各式解得    θ=450
(2)如图,
魔方格
设粒子在磁场中做匀速圆周运动为R,当磁场宽度满足d≥R+Rsin
π
4
时,粒子从磁场的左边离开时,在磁场中的运动时间最长,根据几何知识可求出此时粒子轨迹圆对应的圆心角为 θ=
3
2
π

   所以粒子运动最长时间 t=
θ
T

粒子运动周期  T=
2πm
Bq

由以上各式求得粒子比荷  
q
m
=1×105C/Kg

(3)粒子离开偏转电场时速度大小 v=

v20
+
v2y

  洛仑兹力提供向心力  
当粒子轨迹圆与磁场右边界相切时,磁场宽度最小.
由几何知识d=R+Rsin
π
4

由以上各式得  d=
2+

2
3
m≈1.14m

◎ 解析

“略”

◎ 知识点

    专家分析,试题“如图,某带电粒子由静止经C、D间电压U=1×103V加速后,沿两水平金属板M、N中心线OO′射入.已知两金属板长L=0.2m,板间有一沿竖直方向的匀强电场(板外无电场),场强E=1×104V/m…”主要考查了你对  【向心力】,【牛顿第二定律】,【动能定理】,【磁场对运动电荷的作用:洛伦兹力、左手定则】,【带电粒子在匀强磁场中的运动】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐