质量为m的滑块从半径为R的半球形碗的边缘滑向碗底,过碗底时的速度大小为v,若滑块与碗底间的动摩擦因数为μ,则在过碗底时滑块受到摩擦力的大小为

◎ 题目

质量为m的滑块从半径为R的半球形碗的边缘滑向碗底,过碗底时的速度大小为v,若滑块与碗底间的动摩擦因数为μ,则在过碗底时滑块受到摩擦力的大小为

◎ 答案

◎ 解析


分析:滑块经过碗底时,由重力和碗底对球支持力的合力提供向心力,根据牛顿第二定律求出碗底对球的支持力,再由摩擦力公式求解在过碗底时滑块受到摩擦力的大小.
解:滑块经过碗底时,由重力和支持力的合力提供向心力,根据牛顿第二定律得
FN-mg=m
则碗底对球支持力FN=mg+m
所以在过碗底时滑块受到摩擦力的大小f=μFN=μ(mg+m)=μm(g+)
故答案为:μm(g+)

◎ 知识点

    专家分析,试题“质量为m的滑块从半径为R的半球形碗的边缘滑向碗底,过碗底时的速度大小为v,若滑块与碗底间的动摩擦因数为μ,则在过碗底时滑块受到摩擦力的大小为…”主要考查了你对  【生活中的其他圆周运动】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐