宇航员站在某行星表面上一高处,沿水平方向抛出一个小球,经过时间t,小球落到行星表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大为原来的2倍,抛出点与落地

◎ 题目

宇航员站在某行星表面上一高处,沿水平方向抛出一个小球,经过时间t,小球落到行星表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大为原来的2倍,抛出点与落地点之间的距离变为原来的1.5倍。已知两落地点在同一水平面内,该行星的半径为R,引力常量为G,求该行星的质量。

◎ 答案

解:设第一次抛出后小球水平位移为,则第二次为2
      由几何关系可知
       ②
      由①②得
      平抛运动竖直方向位移
      根据牛顿第二定律
      由上式联立解得

◎ 解析

“略”

◎ 知识点

    专家分析,试题“宇航员站在某行星表面上一高处,沿水平方向抛出一个小球,经过时间t,小球落到行星表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大为原来的2倍,抛出点与落地…”主要考查了你对  【平抛运动】,【计算天体质量与密度】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐