如图所示,光滑斜面倾角为θ,c为斜面上的固定挡板.物块a和b通过轻质弹簧连接,a,b处于静止状态,弹簧压缩量为x.现对a施加沿斜面向下的外力使弹簧再压缩3x,之后突然撤去外力

◎ 题目

如图所示,光滑斜面倾角为θ,c为斜面上的固定挡板.物块a和b通过轻质弹簧连接,a,b处于静止状态,弹簧压缩量为x.现 对a施加沿斜面向下的外力使弹簧再压缩3x,之后突然撤去外 力,经时间t,物块a沿斜面向上运动的速度为v,此时物块b刚要离开挡板.已知两物块的质量均为m,重力加速度为g.下列说法正确的是(  )
A.弹簧的劲度系数为
mgsinθ
x
B.物块b刚要离开挡板时,a的加速度为gsinθ
C.物块a沿斜面向上运动速度最大时,物块b对挡板c的压力为O
D.撤去外力后,经过时t,弹簧弹力对物块a做的功为5mgsinθ+
1
2
-mv2
魔方格

◎ 答案

A、静止时,对a:由平衡条件可知,弹簧的弹力大小等于物块a重力沿斜面向下的分力,由胡克定律得:弹簧的劲度系数k=
mgsinθ
x
.故A正确.
B、物块b刚要离开挡板时,弹簧的弹力等于物块b的重力沿斜面向下的分力,则对a有:2mgsinθ=ma,得a=gsinθ.故B错误.
C、物块a沿斜面向上运动速度最大时,弹簧的弹力沿斜面向上,大小与a的重力沿斜面向下的分力相等,则知,弹簧对b有向下2的压力,故物块b对挡板c的压力不为O.故C错误.
D、撤去外力后,经过时t,弹簧的伸长量为x′=
mgsinθ
k
,根据动能定理得:W-mg(4x+x′)sinθ=
1
2
mv2
,解得,弹簧弹力对物块a做的功为W=5mgsinθ+
1
2
mv2.故D正确.
故选AD

◎ 解析

“略”

◎ 知识点

    专家分析,试题“如图所示,光滑斜面倾角为θ,c为斜面上的固定挡板.物块a和b通过轻质弹簧连接,a,b处于静止状态,弹簧压缩量为x.现对a施加沿斜面向下的外力使弹簧再压缩3x,之后突然撤去外力…”主要考查了你对  【弹力的大小、胡克定律】,【共点力的平衡】,【牛顿第二定律】,【动能定理】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐